Skip to main content

Calculation of Surface Enhanced Raman Scattering in Metal Nanoparticles

  • Chapter
  • First Online:
  • 2309 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 4))

Abstract

Theoretical studies on the interactions of rhodamine 6G (R6G) with silver nanoparticles have been carried out. R6G exhibits Surface Enhanced Raman Scattering (SERS) effect on most sensors and has been extensively studied experimentally, so it is a suitable benchmark. By means of density functional quantum chemical calculations by the B3LYP method at the DGDZVP or LANL2DZ level, the chemical enhancement was studied. Shape and enhancement of Raman spectra dependent on nanoparticle system size was investigated systematically in two-dimensional metal clusters and it was found that for 4, 6, and 8 silver atoms no substantial changes in the chemically enhanced magnification occurs. To complement this study, infrared spectra were also calculated. The spectra compare generally well with experimental results. Finally, the influence of the metal was tested within the copper group: in order of increasing chemical enhancement, the metals rank gold, copper, and silver, but the increase is very moderate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kneipp, K., Wang, Y., Kneipp, H., et al.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)

    Article  CAS  Google Scholar 

  2. Xu, H., Bjerneld, E.J., Käll, M., et al.: Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)

    Article  CAS  Google Scholar 

  3. Futamata, M., Maruyama, Y., Ishikawa, M.: Microscopic morphology and SERS activity of Ag colloidal particles. Vib. Spectrosc. 30, 17–23 (2002)

    Article  CAS  Google Scholar 

  4. Lombardi, J.R., Birke, R.L.: A unified approach to surface-enhanced Raman spectroscpy. J. Phys. Chem. C 112, 5605–5617 (2008)

    Article  CAS  Google Scholar 

  5. Schatz, G.C., Young, M.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. In: Kneipp, K., Moskovits, M., Kneipp, H. (eds.) Surface-Enhanced Raman Scattering Physics and Applications. Topics in Applied Physics. Springer, Berlin (2006)

    Google Scholar 

  6. Otto, A., Futamata, M.: Electronic mechanisms of SERS. In: Kneipp, K., Moskovits, M., Kneipp, H. (eds.) Surface-Enhanced Raman Scattering Physics and Applications. Topics in Applied Physics. Springer, Berlin (2006)

    Google Scholar 

  7. Nie, S., Emory, S.R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  CAS  Google Scholar 

  8. Le Ru, E.C., Meyer, M., Etchegoin, P.G.: Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B. 110, 1944–1948 (2006)

    Article  Google Scholar 

  9. Ji, X., Xu, S., Wang, L., et al.: Immunoassay using the probe-labeled Au/Ag core-shell nanoparticles based on surface-enhanced Raman scattering. Coll. Surf. A: Physicochem. Eng. Aspects 257, 171–175 (2005)

    Article  Google Scholar 

  10. Fabris, L., Dante, M., Nguyen, T., et al.: SERS aptatags: new responsive metallic nanostructures for heterogeneous protein detection by surface enhanced Raman spectroscopy. Adv. Funct. Mater. 18, 2518–2525 (2008)

    Article  CAS  Google Scholar 

  11. Guerrini, L., Garcia-Ramos, J.V., Domingo, C., et al.: Nanosensors based on viologen functionalized silver nanoparticles: few molecules surface. enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots. Anal. Chem. 81, 1418–1425 (2009)

    Article  CAS  Google Scholar 

  12. Abalde-Cela, S., Ho, S., Rodríguez-González, B., et al.: Loading of exponentially grown LBL films with Ag nanoparticles and their application for generalized SERS detection. Angew. Chem. Int. Ed. 48, 5326–5329 (2009)

    Article  CAS  Google Scholar 

  13. Kneipp, K., Kneipp, H., Bohr, H.G.: Single molecule sers spectroscopy in surface enhanced Raman scattering. In: Kneipp, K., Moskovits, M., Kneipp, H. (eds.) Surface-Enhanced Raman Scattering Physics and Applications. Topics in Applied Physics. Springer, Berlin (2006)

    Chapter  Google Scholar 

  14. Sánchez-Iglesias, A., Aldeanueva-Potel, P., Ni, W., et al.: Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today 5, 21–27 (2010)

    Article  Google Scholar 

  15. Alvarez-Puebla, R.A., Liz-Marzán, L.M.: SERS-based diagnosis and biodetection. Small 6, 604–610 (2010)

    Article  CAS  Google Scholar 

  16. Das, A., Zhao, J., Schatz, G.C., et al.: Screening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Anal. Chem. 81, 3754–3759 (2009)

    Article  CAS  Google Scholar 

  17. Castillo, P.M., Herrera, J.L., Fernandez-Montesinos, R., et al.: Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by toll-like receptor ligands. Nanomed. 3, 627–635 (2008)

    Article  Google Scholar 

  18. Caro, C., Lopez-Cartes, C., Zaderenko, A.P., et al.: Thiol-immobilized silver nanoparticle aggregate films for surface enhanced Raman scattering. J. Raman Spectrosc. 39, 1162–1169 (2008)

    Article  CAS  Google Scholar 

  19. Futamata, M., Maruyama, Y.: Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering. Anal. Bioanal. Chem. 388, 89 (2007)

    Article  CAS  Google Scholar 

  20. Watanabe, H., Hayazawa, N., Inouye, Y., et al.: DFT vibrational calculations of Rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. J. Phys. Chem. B 109, 5012–5020 (2005)

    Article  CAS  Google Scholar 

  21. Saini, G.S.S., Sharma, A., Kaur, S., et al.: Rhodamine 6G interaction with solvents studied by vibrational spectroscopy and density functional theory. J. Molec. Struct. 931, 10–19 (2009)

    Article  CAS  Google Scholar 

  22. Jensen, L., Schatz, G.C.: Resonance Raman scattering of rhodamine 6g as calculated using time-dependent density functional theory. J. Phys. Chem. A 110, 5973–5977 (2006)

    Article  CAS  Google Scholar 

  23. Morton, S.M., Jensen, L.: Understanding the molecule-surface chemical coupling in SERS. J. Am. Chem. Soc. 131, 4090–4098 (2009)

    Article  CAS  Google Scholar 

  24. Pagliai, M., Muniz-Miranda, M., Cardini, G., et al.: Solvation dynamics and adsorption on ag hydrosols of oxazole: a Raman and computational study. J. Phys. Chem. A 113, 15198–15205 (2009)

    Article  CAS  Google Scholar 

  25. Avila, F., Soto, J., Arenas, J.F., et al.: Outstanding role of silver nanoparticles in the surface-enhanced resonance Raman scattering of p-benzosemiquinone. J. Phys. Chem. C 113, 105–108 (2009)

    Article  CAS  Google Scholar 

  26. Leopold, N., Lendl, B.: A new method for fast preparation of highly SERS active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 107, 5723–5727 (2003)

    Article  CAS  Google Scholar 

  27. Frisch M.J., Trucks G.W., Schlegel H.B. et al.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  28. Michalska, D., Wysokinski, R.: The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory. Chem. Phys. Lett. 403, 211–217 (2005)

    Article  CAS  Google Scholar 

  29. Kaczor, A., Malek, K., Baranska, M.: Pyridine on colloidal silver. Polarization of surface studied by surface-enhanced Raman scattering and density functional theory methods. J. Phys. Chem. C 114, 3909–3917 (2010)

    Article  CAS  Google Scholar 

  30. Yurieva, A.G., Poleshchuk, O.K., Filimov, V.D.: Comparative analysis of a full-electron basis set and pseudopotential for the iodine atom in DFT quantum-chemical calculations of iodine-containing compounds. J. Struct. Chem. 49, 548–552 (2008)

    Article  CAS  Google Scholar 

  31. Baletto, F., Ferrando, F.: Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005)

    Article  CAS  Google Scholar 

  32. Chiu, Y.P., Wei, C.M., Chang, C.S.: Density functional study of surface-supported planar magic Ag nanoclusters. Phys. Rev. B 78, 115402–115409 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the Junta de Andalucía (P07-FQM-02595), the Regional Ministry of Health (PI-0070/2008 to A.P.Z), and the PAIDI Program from the Regional Government (RFM; FQM319). C. Caro is grateful to the Junta de Andalucía P07-FQM-02595 for his pre-doctoral fellowship. C. Caro is indebted to the late Jose Antonio Mejías for introducing him in nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Jacques Merkling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caro, C., Zaderenko, A.P., Merkling, P.J. (2012). Calculation of Surface Enhanced Raman Scattering in Metal Nanoparticles. In: Öchsner, A., Shokuhfar, A. (eds) New Frontiers of Nanoparticles and Nanocomposite Materials. Advanced Structured Materials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2012_65

Download citation

Publish with us

Policies and ethics