Skip to main content

Modeling Carbon Nanotube Electrical Properties in CNT/Polymer Composites

  • Chapter
  • First Online:
New Frontiers of Nanoparticles and Nanocomposite Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 4))

  • 2347 Accesses

Abstract

In this work it is demonstrated that the capacitance between two cylinders increases with the rotation angle and it has a fundamental influence on the composite dielectric constant. The dielectric constant is lower for nematic materials than for isotropic ones and this can be attributed to the effect of the filler alignment in the capacitance. The effect of aspect ratio in the conductivity is also studied in this work. Finally, based on previous work and by comparing to results from the literature it is found that the electrical conductivity in this type of composites is due to hopping between nearest fillers resulting in a weak disorder regime that is similar to the single junction expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Saleha, M.H., Sundarara, U.: A review of vapor grown carbon nanofiber/polymer conductive nanocomposites. Carbon 47, 2–22 (2009)

    Article  Google Scholar 

  2. Thostenson, E.T., Li, C., Chou, T.-W.: Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)

    Article  CAS  Google Scholar 

  3. Baughman, R.H., Zakhidov, A.A., Heer, W.: Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)

    Article  CAS  Google Scholar 

  4. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  5. Garnett, J.C.M.: Colours in metal classes and in metallic films. Philos T Roy Soc A 203, 385–420 (1904)

    Article  CAS  Google Scholar 

  6. Bergman, D.J., Imry, Y.: Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material. Phys. Rev. Lett. 39, 1222–1225 (1977)

    Article  Google Scholar 

  7. Brosseau, C., Queffelec, P., Talbot, P.: Microwave characterization of filled polymers. J. Appl. Phys. 89, 4532–4540 (2001)

    Article  CAS  Google Scholar 

  8. Cheng, Y., Chen, X., Wu, K., et al.: Modeling and simulation for effective permittivity of two-phase disordered composites. J. Appl. Phys. 103, 034111 (2008)

    Article  Google Scholar 

  9. Stauffer, D., Aharony, A.: Introduction To Percolation Theory. Taylor and Francis, London (1992)

    Google Scholar 

  10. Kirkpatrick, S.: Percolation and conduction. Rev. Mod. Phys. 45, 574 (1973)

    Article  Google Scholar 

  11. Herrmann, H.J., Derrida, B., Vannimenus, J.: Superconductivity exponents in two- and three-dimensional percolation. Phys. Rev. B 30, 4080 (1984)

    Article  Google Scholar 

  12. Bergman, D.J.: Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material. Phys. Rev. Lett. 44, 1285–1287 (1980)

    Article  CAS  Google Scholar 

  13. Nan, C.-W.: Physics of inhomogeneous inorganic materials. Prog In Mater Sci 37, 1–116 (1993)

    Article  CAS  Google Scholar 

  14. Nan, C.-W., Shen, Y., Ma, J.: Physical properties of composites near percolation. Annu. Rev. Mater. Sci. 40, 131–151 (2010)

    Article  CAS  Google Scholar 

  15. Archangelis, L., Redener, S., Herrmann, J.H.: A random fuse model for breaking processes. J. Physique. Lett. 46, L585–L590 (1985)

    Article  Google Scholar 

  16. Duxbury, P.M., Beale, P.D., Leath, P.L.: Size effects of electrical breakdown in quenched random media. Phys. Rev. Lett. 57, 1052–1055 (1986)

    Article  CAS  Google Scholar 

  17. Bowman, D.R., Stroud, D.: Model for dielectric breakdown in metal-insulator compo-sites. Phys. Rev. B 40, 4641–4650 (1989)

    Article  Google Scholar 

  18. Beale, P.D., Duxbury, P.M.: Theory of dielectric breakdown in metal-loaded dielectrics. Phys. Rev. B 37, 2785–2791 (1988)

    Article  Google Scholar 

  19. Gyure, M.F., Beale, P.D.: Dielectric breakdown of a random array of conducting cylinders. Phys. Rev. B 40, 9533–9540 (1989)

    Article  Google Scholar 

  20. Gyure, M.F., Beale, P.D.: Dielectric breakdown in continuous models of metal-loaded dielectrics. Phys. Rev. B 46, 3736–3746 (1992)

    Article  Google Scholar 

  21. Simoes, R., Silva, J., Vaia, R., et al.: Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and expriments. Nantechnology 20, 35703 (2009)

    Article  Google Scholar 

  22. Bauhofer, W., Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)

    Article  CAS  Google Scholar 

  23. Dalmas, F., Dendievel, R., Chazeau, L., et al.: Carbon nanotube-filled polymer composites numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta. Mater. 54, 2923–2931 (2006)

    Article  CAS  Google Scholar 

  24. Hu, N., Masuda, Z., Cheng, Y., et al.: The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 19, 215701 (2008)

    Article  Google Scholar 

  25. Sun, X., Song, M.: Highly conductive carbon nanotube/polymer nanocomposites achievable? Macromol. Theor. Simul. 18, 155–161 (2009)

    Article  CAS  Google Scholar 

  26. White, S.I., DiDonna, B.A., Mu, M., et al.: Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys. Rev. B 79, 24301–24306 (2009)

    Article  Google Scholar 

  27. Berhan, L., Sastry, A.M.: Modeling percolation in high-aspect-ratio fiber systems. II The effect of waviness on the percolation onset. Phys. Rev. E 75, 41121–41127 (2007)

    Article  CAS  Google Scholar 

  28. Berhan, L., Sastry, A.M.: Modeling percolation in high-aspect-ratio fiber systems. I Soft-core versus hard-core models. Phys. Rev. E 75, 41120–41128 (2007)

    Article  CAS  Google Scholar 

  29. Cardoso, P., Silva, J., Paleo, A.J., et al.: The dominant role of tunneling in the conductivity of carbon nanofiber-epoxy composites. Phys. Status. Solidi. A 207, 407–410 (2010)

    Article  CAS  Google Scholar 

  30. Silva, J., Simoes, R., Lanceros-Mendez, S., et al.: Applying complex network theory to the understanding of high aspect ratio carbon filled composites. Europhys. Lett. 93, 37005 (2011)

    Article  Google Scholar 

  31. Silva, J., Ribeiro, S., Lanceros-Mendez, S., et al.: The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocomposites. Compos. Sci. Technol. 71, 643–646 (2011)

    Article  CAS  Google Scholar 

  32. Nabors, K., White, J.: Fastcap: a multipole accelerated 3-D capacitance extraction program. IEEE Trans. Comput. Aided. Design. Integ. Circuits. Syst. 10, 1447 (1991)

    Article  Google Scholar 

  33. Simoes, R., Silva, J., Lanceros-Mendez, S., et al.: Influence of fiber aspect ratio and orientation on the dielectric properties of polymer-based nanocomposites. J. Mater. Sci. 45, 268–270 (2009)

    Article  Google Scholar 

  34. Irurzun, I., Vicente, J., Cordero, M., et al.: Fractal analysis of electrical trees in a cross-linked synthetic resin. Phys. Rev. E 63, 016110 (2000)

    Article  Google Scholar 

  35. Faiella, G., Pscitelli, F., Lavorgna, M., et al.: Tuning the insulator to conductor transition in a multiwalled carbon nanotubes/epoxy composite at substatistical percolation threshold. App. Phys. Lett. 95, 153106 (2009)

    Article  Google Scholar 

  36. Dombovari, A., Halonen, N., Sapi, A., et al.: Moderate anisotropy in the electrical conductivity of bulk MWCNT/epoxy composites. Carbon 48, 1918–1925 (2010)

    Article  CAS  Google Scholar 

  37. Arlen, M.J., Wang, D., Jacobs, J.D., et al.: Thermal-electrical character of in situ synthesized polyimide-grafted carbon nanofiber composites. Macromolecules 41, 8053–8062 (2008)

    Article  CAS  Google Scholar 

  38. Trionfi, A., Wang, D.H., Jacobs, J.D., et al.: Direct measurement of the percolation probability in carbon nanofiber-polyimide nanocomposites. Phys. Rev. Lett. 102, 116601 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Foundation for Science and Technology, Lisbon, through the 3° Quadro Comunitário de Apoio, POCTI and FEDER funds through the “Programa Operacional Factores de Competitividade—COMPETE”, project references PEst-C/CTM/LA0025/2011, NANO/NMed-SD/0156/2007, PTDC/CTM/69316/2006, PTDC-EME-PME-108859-2008, and PTDC/CTM-NAN/112574/2009 and grant SFRH/BD/60623/2009 (JS). The authors also thank support from the COST action MP0902 “Composites of Inorganic Nanotubes and Polymers (COINAPO)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Simoes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silva, J., Simoes, R., Lanceros-Mendez, S. (2012). Modeling Carbon Nanotube Electrical Properties in CNT/Polymer Composites. In: Öchsner, A., Shokuhfar, A. (eds) New Frontiers of Nanoparticles and Nanocomposite Materials. Advanced Structured Materials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2012_64

Download citation

Publish with us

Policies and ethics