Skip to main content

Computer Simulation of Diffusion and Reaction in Metallic Nanoparticles

  • Chapter
  • First Online:
Book cover New Frontiers of Nanoparticles and Nanocomposite Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 4))

  • 2351 Accesses

Abstract

In this chapter, we review the understanding that has been gained by the simulation methods of kinetic Monte Carlo and molecular dynamics of solid state diffusion in nanoparticles. We discuss the simulation of the formation and subsequent shrinkage by diffusion of hollow nanoparticles, the formation by diffusion of segregated bi-metallic nanoparticles and the diffusion with reaction to form intermetallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yin, Y.D., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A., Alivisatos, A.P.: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004)

    Article  CAS  Google Scholar 

  2. Smigelskas, A.D., Kirkendall, E.O.: Zinc diffusion in alpha brass. Trans. AIME 171, 130–142 (1947)

    Google Scholar 

  3. Wang, C.M., Baer, D.R., Thomas, L.E., Amonette, J.E., Antony, J., Qiang, Y., Duscher, G.: Void formation during early stages of passivation: initial oxidation of iron nanoparticles at room temperature. J. Appl. Phys. 98, 94308-1−94308-7 (2005)

    Google Scholar 

  4. Han, C., Wu, X., Lin, Y., Gu, G., Fu, X., Hi, Z.: Preparation and characterization of Y2O3 hollow spheres. J. Mater. Sci. 41, 3679–3682 (2006)

    Article  CAS  Google Scholar 

  5. Nakamura, R., Tokozakura, D., Nakajima, H.: Hollow oxide formation by oxidation of Al and Cu nanoparticles. J. Appl. Phys. 101, 074303-1–074303-7 (2007)

    Google Scholar 

  6. Nakamura, R., Lee, J.G., Tokozakura, D., Mori, H., Nakajima, H.: Formation of hollow ZnO through low-temperature oxidation of Zn nanoparticles. Mater. Lett. 61, 1060–1063 (2007)

    Article  CAS  Google Scholar 

  7. Nakamura, R., Lee, J.G., Tokozakura, D., Mori, H., Nakajima, H.: Oxidation behaviour of Ni nanoparticles and formation process of hollow NiO. Phil. Mag. 88, 257–264 (2008)

    Article  CAS  Google Scholar 

  8. Xie, L., Zhang, J., Liu, Y., Li, Y., Li, X.: Synthesis of Li2NH hollow nanospheres with superior hydrogen storage kinetics by plasma metal reaction. Chem. Mater. 20, 282–286 (2008)

    Article  CAS  Google Scholar 

  9. Ng, C.H., Tan, H., Fan, W.Y.: Formation of Ag2Se nanotubes and dendrite-like structures from UV irradiation of a CSe2/Ag colloidal solution. Langmuir 22, 9712–9717 (2006)

    Article  CAS  Google Scholar 

  10. Gao, J., Zhang, B., Zhang, X., Xu, B.: Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide. Angew. Chem. Int. Ed. 45, 1220–1223 (2006)

    Article  CAS  Google Scholar 

  11. Li, Q., Penner, R.M.: Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles. Nano Lett. 5, 1720–1725 (2005)

    Article  CAS  Google Scholar 

  12. Fan, H.J., Knez, M., Scholz, R., Nielsch, K., Pippel, E., Hesse, D., Zacharias, M., Gösele, U.: Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 5, 627–631 (2006)

    Article  CAS  Google Scholar 

  13. Aldinger, F.: Controlled porosity by an extreme Kirkendall effect. Acta Met. 22, 923–928 (1974)

    Article  CAS  Google Scholar 

  14. Geguzin, Y.E.: Why and how vacancies disappear. Science, Moscow (1976)

    Google Scholar 

  15. Sun, Y., Mayers, B., Xia, Y.: Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003)

    Article  CAS  Google Scholar 

  16. Tu, K.N., Gösele, U.: Hollow nanostructures based on the Kirkendall effect: design and stability considerations. Appl. Phys. Lett. 86, 093111-1−093111-3 (2005)

    Google Scholar 

  17. Belova, I.V., Murch, G.E.: Analysis of the formation of hollow nanocrystals: theory and Monte Carlo simulation. J. Phase. Equil. Diffus. 26, 430–434 (2005)

    CAS  Google Scholar 

  18. Philibert, J., Atom movements: diffusion and mass transport in solids. editions de physique, les ulis (1991)

    Google Scholar 

  19. Manning, J.R.: Diffusion kinetics for atoms in crystals. Van Nostrand Reinhold, Princeton (1968)

    Google Scholar 

  20. Prasad, S., Paul, A.: Theoretical consideration on the formation of nanotube following the Kirkendall effect. Appl. Phys. Lett. 90, 233114-1−233114-3 (2007)

    Google Scholar 

  21. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Formation of a hollow binary alloy nanosphere: a kinetic Monte Carlo study. J. Nano Res. 7, 11–17 (2009)

    Article  CAS  Google Scholar 

  22. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  CAS  Google Scholar 

  23. Gusak, A.M., Zaporozhets, T.V.: Hollow nanoshell formation and collapse in binary solid solutions with large range of solubility. J. Phys. Condens. Mat. 21, 415303-1–415303-11 (2009)

    Google Scholar 

  24. Gusak, A.M., Zaporozhets, T.V., Tu, K.N., Gösele, U.: Kinetic analysis of the instability of hollow nanoparticles. Phil. Mag. 85, 4445–4464 (2005)

    Article  CAS  Google Scholar 

  25. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Shrinking kinetics by vacancy diffusion of a pure element hollow nanosphere. Phil. Mag. 87, 3787–3796 (2007)

    Article  CAS  Google Scholar 

  26. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Stability and shrinkage by diffusion of hollow nanotubes. Def. Diff. Forum 266, 39–47 (2007)

    Article  CAS  Google Scholar 

  27. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Theoretical analysis and atomistic modelling of diffusion and stability of pure element hollow nanospheres and nanotubes. Def. Diff. Forum 277, 21–26 (2008)

    Article  CAS  Google Scholar 

  28. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Stability of hollow nanospheres: a molecular dynamics study. Sol. St. Phen. 129, 125–130 (2007)

    Article  CAS  Google Scholar 

  29. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Shrinking kinetics by vacancy diffusion of hollow binary alloy nanospheres driven by the Gibbs-Thomson effect. Phil. Mag. 88, 1524–1541 (2008)

    Google Scholar 

  30. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Composition effect on shrinkage of hollow binary alloy nanospheres. Def. Diff. Forum 289–292, 665–672 (2009)

    Article  Google Scholar 

  31. Moleko, L.K., Allnatt, A.R., Allnatt, E.L.: A self-consistent theory of matter transport in a random lattice gas and some simulation results. Phil. Mag. A 59, 141–160 (1989)

    Article  Google Scholar 

  32. Murch, G.E., Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Recent progress in the simulation of diffusion associated with hollow and bi-metallic nanoparticles. Diffus. Fundam. 11, 42.1–42.22 (2009)

    Google Scholar 

  33. Toshima, N., Kanemaru, M., Shiraishi, Y., Koga, Y.: Spontaneous formation of core/shell bimetallic nanoparticles: A calorimetric study. J. Phys. Chem. B 109, 16326–16331 (2005)

    Article  CAS  Google Scholar 

  34. Takenaka, S., Shigeta, Y., Tanabem, E., Otsuka, K.: Methane decomposition into hydrogen and carbon nanofibers over supported Pd−Ni catalysts: Characterization of the catalysts during the reaction. J. Phys. Chem. 108, 7656–7664 (2004)

    CAS  Google Scholar 

  35. Sao-Joao, S., Giorgio, S., Penisson, J.M., Chapon, C., et al.: Structure and deformations of Pd−Ni core-shell nanoparticles. J. Phys. Chem. 109, 342–347 (2005)

    Google Scholar 

  36. Hungría, A.B., Calvino, J.J., Anderson, J.A., Martínez-Arias, A.: Model bimetallic Pd–Ni automotive exhaust catalysts: Influence of thermal aging and hydrocarbon self-poisoning. Appl. Catal. 62, 359–368 (2006)

    Article  Google Scholar 

  37. Miegge, P., Rousset, J.L., Tardy, B., Massardier, J., et al.: Pd1Ni99 and Pd5Ni95-Pd surface segregation and reactivity for the hydrogenation of 1,3-butadiene. J. Catal. 149, 404–413 (1994)

    Article  CAS  Google Scholar 

  38. Hermann, P., Guigner, J.M., Tardy, B., Jugnet, Y., et al.: The Pd/Ni(110) bimetallic system: surface characterisation by LEED, AES, XPS, and LEIS techniques; new insight on catalytic properties. J. Catal. 163, 169–175 (1996)

    Article  CAS  Google Scholar 

  39. Michel, A.C., Lianos, L., Rousset, J.L., Delichère, P., et al.: Surface characterization and reactivity of Pd8Ni92 (111) and (110) alloys. Surf. Sci. 416, 288–294 (1998)

    Article  CAS  Google Scholar 

  40. Porte, L., Phaner-Goutorbe, M., Guigner, J.M., Bertolini, J.C.: Structuring and catalytic activity of palladium thin layers deposited on the Ni(110) surface. Surf. Sci. 424, 262–270 (1999)

    Article  CAS  Google Scholar 

  41. Levchenko, E.V., Evteev, A.V., Belova, I.V., Murch, G.E.: Surface-sandwich segregation phenomena in bimetallic Ag−Ni and Pd−Ni nanoparticles: a molecular dynamics study. Def. Diff. Forum 289–292, 657–664 (2009)

    Article  Google Scholar 

  42. Baletto, F., Mottet, C., Ferrando, R.: Growth of three-shell onionlike bimetallic nanoparticles. Phys. Rev. Lett. 90, 135504-1–135504-4 (2003)

    Google Scholar 

  43. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Modelling of the formation of Pd−Ni alloy nanoparticles by interdiffusion. Def. Diff. Forum 277, 207–212 (2008)

    Article  CAS  Google Scholar 

  44. Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E.: Interdiffusion and surface–sandwich ordering in initial Ni-core−Pd-shell nanoparticle. Phys. Chem. Chem. Phys. 11, 3233–3240 (2009)

    Article  CAS  Google Scholar 

  45. Frank, F.C., Kasper, J.S.: Complex alloy structures regarded as sphere packings.1. Definitions and basic principles. Acta. Cryst. 11, 184–190 (1959)

    Article  Google Scholar 

  46. Frank, F.C., Kasper, J.S.: Complex alloy structures regarded as sphere packing.2. Analysis and classification of representative structures. Acta. Cryst. 12, 483–499 (1958)

    Article  Google Scholar 

  47. Westbrook, J.H., Fleischer, R.L. (eds.): Intermetallic Compounds: Structural Applications Vol. 4. Wiley, New York (2000)

    Google Scholar 

  48. Dunand, D.C.: Reactive synthesis of aluminide intermetallics. Mater. Manuf. Proc. 10, 373–403 (1995)

    Article  CAS  Google Scholar 

  49. Farber, L., Klinger, L., Gotman, I.: Modeling of reactive synthesis in consolidated blends of fine Ni and Al powders. Mater. Sci. Eng. A 254, 155–165 (1998)

    Article  Google Scholar 

  50. Morsi, K.: Review: reaction synthesis processing of Ni−Al intermetallic materials. Mater. Sci. Eng. A 299, 1–15 (2001)

    Article  Google Scholar 

  51. Li, H.P.: Influence of ignition parameters on micropyretic synthesis of Ni−Al compound. Mater. Sci. Eng. A 404, 146–152 (2005)

    Article  Google Scholar 

  52. Kim, H.Y., Chung, D.S., Hong, S.H.: Intermixing criteria for reaction synthesis of Ni/Al multilayered microfolls. Scripta. Mater. 54, 1715–1719 (2006)

    Article  CAS  Google Scholar 

  53. Li, H.P., Bhaduri, S.B., Sekhar, J.A.: Metal-ceramic composites based on the Ti–B–Cu porosity system. Metall Mater. Trans. A 24, 251–261 (1992)

    Google Scholar 

  54. Dong, S., Hou, P., Cheng, H., Yang, H., Zou, G.: Fabrication of intermetallic Ni−Al by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure. J. Phys. Condens. Mat. 14, 11023–11030 (2002)

    Article  CAS  Google Scholar 

  55. Fukumuto, M., Yamasaki, M., Nie, M., Yasui, T.: X. Synthesis and characterization of nano-structured Ni−Al intermetallic compound coating. Q. J. Jpn. Weld. Soc. 24, 87–92 (2006)

    Article  Google Scholar 

  56. Zhao, S.J., Germann, T.C., Strachan, A. Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. J. Chem. Phys. 125, 164707-1–1647-8 (2006)

    Google Scholar 

  57. Delogu, F.: Demixing phenomena in Ni−Al nanometre-sized particles. Nanotechnology 18, 065708-1–065708-7 (2007)

    Google Scholar 

  58. Delogu, F.: Numerical simulation of the thermal response of Al core/Ni shell nanometer-sized particles. Nanotechnology 18, 505702-1–505702-7 (2007)

    Google Scholar 

  59. Henz, B.J., Hawa, T., Zachariah, M.: Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles. Mol. Simul. 35, 804–811 (2009)

    Article  CAS  Google Scholar 

  60. Henz, B.J., Hawa, T., Zachariah, M. Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles. J. Appl. Phys. 105, 124310-1–124310-10 (2009)

    Google Scholar 

  61. Angelo, J.E., Moody, N.R., Baskes, M.I.: Trapping of hydrogen to lattice-defects in nickel. Model. Simul. Mater. Sci. Eng. 3, 298–307 (1995)

    Article  Google Scholar 

  62. Levchenko, E.V., Evteev, A.V., Riley, D.P., Belova, I.V., Murch, G.E.: Molecular dynamics simulation of the alloying reaction in Al-coated Ni nanoparticle. Comput. Mater. Sci. 47, 712–720 (2010)

    Article  CAS  Google Scholar 

  63. Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A.: Embedded-atom potential for B2-NiAl. Phys. Rev. B 65, 224114-1–224114-14 (2002)

    Google Scholar 

  64. Bradley, A.J., Taylor, A.: An X-ray analysis of the nickel–aluminium system. Proc. R. Soc. Lond. A 159, 56–72 (1937)

    Article  CAS  Google Scholar 

  65. Taylor, A., Doyle, N.J.: Further studies on nickel−aluminum system. J. Appl. Crystallogr. 5, 201–215 (1972)

    Article  CAS  Google Scholar 

  66. Evteev, A.V., Levchenko, E.V., Riley, D.P., Belova, I.V., Murch, G.E.: Reaction of a Ni-coated Al nanoparticle to form B2-Ni−Al: A molecular dynamics study. Phil. Mag. Lett. 89, 815–830 (2009)

    Article  CAS  Google Scholar 

  67. Mishin, Y.: Interatomic potentials for metals. In: Yip, S. (ed.) Handbook of materials modeling. Springer, Dordrecht (2005)

    Google Scholar 

  68. Streitz, F.H., Mintmire, J.W.: Electrostatic potentials for metal-oxide surfaces and interfaces. Phys. Rev. B 50, 11996–12003 (1994)

    Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Australian Research Council under the Discovery Grants Scheme. One of us (E.V.L.) wishes to thank the University of Newcastle for the award of a University Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Evteev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evteev, A.V., Levchenko, E.V., Belova, I.V., Murch, G.E. (2012). Computer Simulation of Diffusion and Reaction in Metallic Nanoparticles. In: Öchsner, A., Shokuhfar, A. (eds) New Frontiers of Nanoparticles and Nanocomposite Materials. Advanced Structured Materials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2011_60

Download citation

Publish with us

Policies and ethics