Materials Selection for Airframes: Assessment Based on the Specific Fatigue Behavior

  • S. M. O. TavaresEmail author
  • P. P. Camanho
  • P. M. S. T. de. Castro
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 8)


Structural weight reduction is a major driver to improve the transportation efficiency particulary in aeronautics. However the lightweight structural designs can be too costly. Indeed, minimum-weight designs are frequently too costly to manufacture, whereas less expensive and easy to fabricate and assemble designs are often much heavier. The most efficient design on the basis of both cost and weight often lies between these two extremes. The current trend in structural materials selection, by the principal commercial aircraft producers, consists of the extensive use of composite materials in the airframe, as in the last generation of twin aisle aircrafts. Composite materials have high specific strength, are less prone to fatigue crack initiation and provide enhanced flexibility for structural optimization compared to the aluminum alloys. On the other hand, aluminum alloys display higher toughness and better damage tolerance in the presence of defects. In order to improve the material selection and the comparison of airframe materials, this chapter presents an weight assessment based on the specific weight for different damage scenarios taking into account their damage tolerant properties.


Stress Intensity Factor Crack Growth Rate Energy Release Rate Linear Elastic Fracture Mechanics Crack Propagation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Katz, P.: Stresses and strains on aircraft. Aviat. Mon. (1997)Google Scholar
  2. 2.
    Megson, T.: Aircraft Structures for Engineering Students, 3rd edn. Butterworth Heinemann, Oxford (1999)Google Scholar
  3. 3.
    Starke, E. et al.: Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 32(2–3), 131–172 (1996)CrossRefGoogle Scholar
  4. 4.
    Airbus: Taking the Lead: the A350 XWB Xtra Wide Body (Airbus A350 XWB Presentation) (2006)Google Scholar
  5. 5.
    Tober, G., Schiller, D.: NDT in Aerospace—State of Art. In: 15th World Conference on Nondestructive Testing (2000)Google Scholar
  6. 6.
    Wanhill, R.: Milestone case histories in aircraft structural integrity. In: Milne, I., Ritchie, R.O., Karihaloo, B. (eds.) Comprehensive Structural Integrity, Pergamon, Oxford (2003).doi: 10.1016/B0-08-043749-4/01002-8 Google Scholar
  7. 7.
    Rösner, H., Jockel-Miranda, K.: Airbus airframe—New technologies and management aspects. Materialwissenschaft und Werkstofftechnik 37(9), 768–772 (2006)CrossRefGoogle Scholar
  8. 8.
    Vermeulen, B., van Tooren, M.: Design case study for a comparative performance analysis of aerospace materials. Mater. Des. 27(1), 10–20 (2006)CrossRefGoogle Scholar
  9. 9.
    Staley, J.T., Hunt, W.H. Jr.: Needs of the aircraft industry for aluminum products. In: 12th Annual NCMS Technical Conference (1998)Google Scholar
  10. 10.
    United States Department of Defense: MIL-HDBK-5H: Military Standardization Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures. Knovel Interactive Editor (2003)Google Scholar
  11. 11.
    Bordesoules, I., Ehrstrom, J., Warner, T., Lequeu, P., Eberl, F.: Trends in developments of aluminum solutions for aerospace applications solutions applications. In: European Work-shop on Short Distance Welding Concepts for Airframes—WELAIR. Geesthacht (Hamburg), Germany (2007)Google Scholar
  12. 12.
    Bickley, F., Schwinghamer, R.J.: NASA Experience with the shuttle External Tank. National Manufacturing Week, NASA Marshall Space Flight Center (1999)Google Scholar
  13. 13.
    Moreira, P., de Jesus, A., de Figueiredo, M., Windisch, M., Sinnema, G., de Castro, P.: Fatigue crack growth behaviour of friction stir welded aluminium-lithium alloy 2195 T8X. In: Iberian Conference on Fracture and Structural Integrity—CIFIE 2010. Porto, Portugal (2010)Google Scholar
  14. 14.
    Béral B.: Airbus composites technologies & structures. In: Colloque Composite—Toulouse. Toulouse, France (2007)Google Scholar
  15. 15.
    Ahmad, Z.: The properties and application of Scandium–Reinforced aluminum. J. Minerals Metals Mater. Soc. 55(2), 35–39 (2003)CrossRefGoogle Scholar
  16. 16.
    Lee, J., Chen, P.: Aluminum-Scandium alloys: Material. Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (2004)Google Scholar
  17. 17.
    Røyset, J., Ryum, N.: Scandium in aluminium alloys. Int. Mater. Rev. 50(1), 19–44 (2005)CrossRefGoogle Scholar
  18. 18.
    Williams, J., Starke, E.: Progress in structural materials for aerospace systems. Acta Materialia 51(19), 5775–5799 (2003)CrossRefGoogle Scholar
  19. 19.
    Lin, J., Sawtell, R., Bray, G., Giummarra, C., Wilson, A., Venema, G.: Aluminum–Copper Alloys Containing Vanadium. United States Patent and Trademark Office: Patent Application US 2010/0183474 A1 (2010)Google Scholar
  20. 20.
    Bhagyashekar, M.S., Rao, R.: Characterization of mechanical behavior of metallic and non-metallic particulate filled epoxy matrix composites. J. Reinforced Plastics Compos. 29(1), 30–42 (2010)CrossRefGoogle Scholar
  21. 21.
    Soutis, C.: Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A 412(1–2), 171–176 (2005)CrossRefGoogle Scholar
  22. 22.
    Griffiths, B.: Boeing sets pace for composite usage in large civil aircraft. High Performance Composites pp. 68–71 (2005)Google Scholar
  23. 23.
    Ostrower, J.: Boeing 787-8 Weight examined. Flight Blogger (Flightglobal Blogs) (2009)
  24. 24.
    Baldwin, H.: Boeing 787 dreamliner: Unmatched economics, performance and passenger Appeal. Aviation Week & Space Technology Market Supplement pp. S1–S30 (2005)Google Scholar
  25. 25.
    Boeing. Design Approaches: A Milestone for Composites in Aviation. J. Failure Anal. Prevention 5(4), 5–7 (2005)Google Scholar
  26. 26.
    Vlot, A.: Glare: History of the Development of a New Aircraft Material. Springer, Netherlands (2001)Google Scholar
  27. 27.
    Schijve, J., Vogelesang, L., Marissen, R.: Laminate of Metal Sheet Material and Threads Bonded Thereto, as Well as Processes for the Manufacture Thereof. United States Patent and Trademark Office: US 4,489,123 (1984)Google Scholar
  28. 28.
    Vlot, A., Vogelesang, L.B., De Vries, T.J.: Towards application of fibre metal laminates in large aircraft. Aircraft Eng. Aerospace Technol. 71(6), 558–570 (1999)CrossRefGoogle Scholar
  29. 29.
    Vogelesang, L., Roebroeks, G.: Metal-Resin Laminate Reinforced with S2-Glass Fibres. United States Patent and Trademark Office: US 5,039,571 (1992)Google Scholar
  30. 30.
    Alderliesten, R.C.: Fatigue crack propagation and delamination growth in glare. PhD Thesis, Technische Universiteit Delft (2005)Google Scholar
  31. 31.
    Alderliesten, R., Homan, J.: Fatigue and damage tolerance issues of glare in aircraft structures. Int. J. Fatigue 28(10), 1116–1123 (2006)Google Scholar
  32. 32.
    Norris, G., Kingsley-Jones, M., Learmount, D., Phelan, M.: Europe’s giant: A special A380 supplement. Flight Int. Suppl. 20(26), 1–16 (2003)Google Scholar
  33. 33.
    Pun, A.: How to predict fatigue life: Three methods of calculating total life, crack initiation, and crack growth. Design News. December (2001)Google Scholar
  34. 34.
    Norris, G.: Creating a titan, Flightglobal. (2005). Accessed 14 June 2005
  35. 35.
    Alderliesten, R., Benedictus, R.: Fiber/Metal composite technology for future primary aircraft structures. J. Aircraft 45(4), 1182–1189 (2008)CrossRefGoogle Scholar
  36. 36.
    Lin, T., Ito, Y.: Fatigue crack nucleation in metals. Proc. Natl. Acad. Sci. USA 62(3), 631 (1969)CrossRefGoogle Scholar
  37. 37.
    Sihn, S., Tsai, S.: Prediction of fatigue SN curves of composite laminates by Super Mic-Mac. Composites Part A Appl. Sci. Manufact. 36(10), 1381–1388 (2005)CrossRefGoogle Scholar
  38. 38.
    Homan, J.: Fatigue initiation in fibre metal laminates. Int. J. Fatigue 28(4), 366–374 (2006)CrossRefGoogle Scholar
  39. 39.
    NASGRO: Fracture mechanics and fatigue crack growth analysis software—Reference Manual, Version 4.02. Southwest Research Institute (SwRI) (2002)Google Scholar
  40. 40.
    Shim, D., Alderliesten, R., Spearing, S., Burianek, D.: Fatigue crack growth prediction in GLARE hybrid laminates. Composites Sci. Technol. 63(12), 1759–1767 (2003)CrossRefGoogle Scholar
  41. 41.
    Turon, A., Costa, J., Camanho, P., Dávila, C.: Simulation of delamination in composites under high-cycle fatigue. Composites Part A Appl. Sci. Manufact. 38(11), 2270–2282 (2007)CrossRefGoogle Scholar
  42. 42.
    Lin, K.Y., Styuart, A., Cheung C.H.E.: Development of reliability-based damage tolerant structural design methodology. In: Advanced Materials in Transport Aircraft Structures (AMTAS), Spring 2007 Meeting (2007)Google Scholar
  43. 43.
    Tada, H., Paris, P., Irwin, G.: The Stress Analysis of Cracks Handbook. ASME Press, New York (2000)CrossRefGoogle Scholar
  44. 44.
    Wood, H.: Application of fracture mechanics to aircraft structural safety. Eng. Fract. Mech. 7(3), 557–558 (1975)CrossRefGoogle Scholar
  45. 45.
    Lopes, C.: Damage and failure of non-conventional composite laminates PhD thesis, TU Delft, Faculteit Luchtvaart-en Ruimtevaarttechniek (2009)Google Scholar
  46. 46.
    Waddoups, M., Eisenmann, J., Kaminski, B.: Macroscopic fracture mechanics of advanced composite materials. J. Composite Mater. 5(4), 446 (1971)CrossRefGoogle Scholar
  47. 47.
    Camanho, P., Maimí, P., Dávila, C.: Prediction of size effects in notched laminates using continuum damage mechanics. Composites Sci. Technol. 67(13), 2715–2727 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. M. O. Tavares
    • 1
    Email author
  • P. P. Camanho
    • 1
  • P. M. S. T. de. Castro
    • 1
  1. 1.Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations