Skip to main content

Lattice Monte Carlo Analysis of Thermal Diffusion in Multi-Phase Materials

  • Chapter
  • First Online:
Heat Transfer in Multi-Phase Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 2))

Abstract

This Chapter addresses the numerical simulation of thermal diffusion in multi-phase materials. A Lattice Monte Carlo method is used in the analysis of two- and three-dimensional calculation models. The composites considered are assembled by two or three phases, each exhibiting different thermal conductivities. First, a random distribution of phases is considered and the dependence of the effective thermal conductivity on the phase composition is investigated. The second part of this analysis uses a random-growth algorithm that simulates the influence of surface energy on the formation of composite materials. The effective thermal conductivity of these structures is investigated and compared to random structures. The final part of the Chapter addresses percolation analyses. It is shown that the simulation of surface energy distinctly affects the percolation behavior and therefore the thermal properties of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. University of Magdeburg, Lab of Scanning Microscopy and Stereology

    Google Scholar 

  2. Tarnawski, V.R., Cleland, D.J., Corasaniti, S., et al.: Extension of soil thermal conductivity models to frozen meats with low and high fat content. Int. J. Refrig. 28, 840–850 (2005)

    Article  Google Scholar 

  3. Carson, J.K., Lovatt, S.J., Tanner, D.J., Cleland, A.C.: Predicting the effective thermal conductivity of unfrozen, porous foods. J. Food Eng. 75, 297–307 (2006)

    Article  Google Scholar 

  4. Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)

    Article  CAS  Google Scholar 

  5. Fiedler, T., Öchsner, A., Belova, I.V., Murch, G.E.: Thermal conductivity enhancement of compact heat sinks using cellular metals. Defect Diffus. Forum 273–276, 222–226 (2008)

    Article  Google Scholar 

  6. Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779–784 (1952)

    Article  CAS  Google Scholar 

  7. Ben-Amoz, M.: The effective thermal properties of two phase solids. Int. J. Eng. Sci. 8, 39–47 (1970)

    Article  CAS  Google Scholar 

  8. Glatzmaier, G.C., Ramirez, W.F.: Use of volume averaging for the modelling of thermal properties of porous materials. Chem. Eng. Sci. 43, 3157–3169 (1988)

    Article  CAS  Google Scholar 

  9. Rio, J.A., Zimmerman, R.W., Dawe, R.A.: Formula for the conductivity of a two-component material based on the reciprocity theorem. Solid State Commun. 106, 183–186 (1998)

    Article  Google Scholar 

  10. Samantray, P.K., Karthikeyan, P., Reddy, K.S.: Estimating effective thermal conductivity of two-phase materials. Int. J. Heat Mass Transf. 49, 4209–4219 (2006)

    Article  Google Scholar 

  11. Karthikeyan, P., Reddy, K.S.: Effective conductivity estimation of binary metallic mixtures. Int. J. Therm. Sci. 46, 419–425 (2006)

    Article  Google Scholar 

  12. Wang, M., Pan, N., Wang, J., Chen, S.: Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media. J. Colloid Interface Sci. 311, 562–570 (2007)

    Article  CAS  Google Scholar 

  13. Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R 63, 1–30 (2008)

    Article  Google Scholar 

  14. Belova, I.V., Murch, G.E., Fiedler, T., Öchsner, A.: The Lattice Monte Carlo method for solving phenomenological mass and heat transport problems. Defect Diffus. Forum 279, 13–22 (2008)

    Article  CAS  Google Scholar 

  15. Fiedler, T., Öchsner, A., Belova, I.V., Murch, G.E.: Calculations of the effective thermal conductivity in a model of syntactic metallic hollow sphere structures using a Lattice Monte Carlo method. Defect Diffus. Forum 273–276, 216–221 (2008)

    Article  Google Scholar 

  16. Fiedler, T., Öchsner, A., Belova, I.V., Murch, G.E.: Recent advances in the prediction of the thermal properties of syntactic metallic hollow sphere structures. Adv. Eng. Mater. 10, 269–273 (2008)

    Article  Google Scholar 

  17. Fiedler, T., Solórzano, E., Garcia-Moreno, F., Öchsner, A., Belova, I.V., Murch, G.E.: Lattice Monte Carlo and experimental analyses of the thermal conductivity of random shaped cellular aluminium. Adv. Eng. Mater. (2008, submitted for publication)

    Google Scholar 

  18. Fiedler, T., Belova, I.V., Öchsner, A., Murch, G.E.: Non-linear calculations of transient thermal conduction in composite materials. Comput. Mater. Sci. 45, 434–438 (2009)

    Article  CAS  Google Scholar 

  19. Fiedler, T., Belova, I.V., Öchsner A., Murch G.E.: A Lattice Monte Carlo Analysis of Thermal Transport in Phase Change Materials. Defect Diffus. Forum 297–301, 154–161 (2010)

    Google Scholar 

  20. Newman, M.E.J., Ziff, R.M., Zia, R.K.P.: Two-dimensional polymer networks near percolation. J. Phys. A Math. Theor. 41, 1–7 (2008)

    Google Scholar 

  21. Jiří, Š., Nezbeda, I.: Percolation threshold parameters of fluids. Phys. Rev. E 79, 041141–041147 (2009)

    Article  Google Scholar 

  22. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Berlin) 416, 665–679 (1935)

    Article  Google Scholar 

  23. Moleko, L.K., Allnatt, A.R., Allnatt, E.L.: A self-consistent theory of matter transport in a random lattice gas and some simulation results. Philos. Mag. A 59, 141–160 (1989)

    Article  Google Scholar 

  24. Fiedler, T., Pesetskaya, E., Öchsner, A., Grácio, J.: Numerical and analytical calculation of the orthotropic heat transfer properties of fibre-reinforced materials. Mater. Sci. Eng. 36, 602–607 (2005)

    CAS  Google Scholar 

  25. Kikuchi, R.: Concept of the long-range order in percolation problems. J. Chem. Phys. 53, 2713–2718 (1970)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fiedler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiedler, T., Belova, I.V., Öchsner, A., Murch, G.E. (2010). Lattice Monte Carlo Analysis of Thermal Diffusion in Multi-Phase Materials. In: Öchsner, A., Murch, G. (eds) Heat Transfer in Multi-Phase Materials. Advanced Structured Materials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_6

Download citation

Publish with us

Policies and ethics