Lightweight Stiffened Panels Fabricated Using Emerging Fabrication Technologies: Fatigue Behaviour

  • P. M. G. P. MoreiraEmail author
  • V. Richter-Trummer
  • P. M. S. T. de Castro
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 8)


The need for lower cost and the emergence of new welding technologies has brought interest in large integral metallic structures for aircraft applications; however, new problems must be addressed, e.g. in integral structures, a crack approaching a stiffener propagates simultaneously in the skin and into the stiffener and breaks it. The use of manufacturing techniques such as high speed machining (HSM), laser beam welding (LBW) and friction stir welding (FSW) requires further experimental and numerical work concerning the fatigue behaviour of panels manufactured using those processes. This chapter is focused on an experimental test programme including fatigue crack growth rate characterization in panels fabricated using HSM, LBW and FSW. The work was developed in the frame of the European Union DaToN project. Data was obtained for panels tested in mode I crack propagation under load ratios (R) of 0.1 and 0.5. It was found that welded panels presented longer lives up to rupture. This result is associated to the residual stress fields existing in the welded panels, and also to the location of the initial artificial defect, placed in the skin midway the specimen’s two stiffeners.


Fatigue Crack Stress Intensity Factor Fatigue Life Crack Growth Rate Friction Stir Welding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is part of IDMEC-Porto contribution to the EU project DaToN contract FP6-516053. The authors acknowledge the collaboration of Mr. Miguel A. V. de Figueiredo and Mr. Rui Silva in the experiments. Dr. Moreira acknowledges POPHQREN-Tipologia 4.2—Promotion of scientific employment funded by the ESF and MCTES.


  1. 1.
    Paik, J., van der Veen, S., Duran, A., Collette, M.: Ultimate compressive strength design methods of aluminum welded stiffened panel structures for aerospace, marine and land-based applications: a benchmark study. Thin Walled Struct. 43(10), 1550–1566 (2005)CrossRefGoogle Scholar
  2. 2.
    Wen, P., Aliabadi, M., Young, A.: Fracture mechanics analysis of curved stiffened panels using BEM. Int. J. Solids Struct. 40(1), 219–236 (2003)CrossRefGoogle Scholar
  3. 3.
    Murthy, A., Palani, G., Iyer, N.: Remaining life prediction of cracked stiffened panels under constant and variable amplitude loading. Int. J. Fatigue. 29(6), 1125–1139 (2007)CrossRefGoogle Scholar
  4. 4.
    Pettit, R., Wang, J., Toh, C.: Validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs. In NASA/CR-2000-209342 (2000)Google Scholar
  5. 5.
    Murphy, A., Price, M., Lynch, C., Gibson, A.: The computational post-buckling analysis of fuselage stiffened panels loaded in shear. Thin Walled Struct. 43(9), 1455–1474 (2005)Google Scholar
  6. 6.
    Aalberg, A., Langseth, M., Larsen, P.: Stiffened aluminium panels subjected to axial compression. Thin Walled Struct. 39(10), 861–885 (2001)CrossRefGoogle Scholar
  7. 7.
    Salgado, N., Aliabadi, M.: The application of the dual boundary element method to the analysis of cracked stiffened panels. Eng. Fract. Mech. 54(1), 91–105 (1996)CrossRefGoogle Scholar
  8. 8.
    Seshadri, B., Newman, J., Dawicke, D.: Residual strength analyses of stiffened and unstiffened panels—Part II: wide panels. Eng. Fract. Mech. 70(3–4), 509–524 (2003)CrossRefGoogle Scholar
  9. 9.
    Hoffman, E., Harley, R., Wagner, J., Jegley, D., Pecquet, R., Blum, C., Arbegast, W.: Compression buckling behavior of large-scale friction stir welded and riveted 2090-T83 A1-Li alloy skin-stiffener panels. In: NASA/TM-2002-211770 (2002)Google Scholar
  10. 10.
    Mahmoud, H., Dexter, R.: Propagation rate of large cracks in stiffened panels under tension loading. Marine Struct. 18(3), 265–288 (2005)CrossRefGoogle Scholar
  11. 11.
    Dexter, R.J., Pilarski, P.J., Mahmoud, H.N.: Analysis of crack propagation in welded stiffened panels. Int. J. Fatigue 25(9–11), 1169–1174 (2003)CrossRefGoogle Scholar
  12. 12.
    Dexter, R.J., Pilarski, P.J.: Crack propagation in welded stiffened panels. J. Construct. Steel Res. 58(5–8), 1081–1102 (2002)Google Scholar
  13. 13.
    Mellings, S., Baynham, J., Adey, R., Curtin, T.: Durability prediction using automatic crack growth simulation in stiffened panel structures, in (2002)
  14. 14.
    Murphy, A., McCune, W., Quinn, D., Price, M.: The characterisation of friction stir welding process effects on stiffened panel buckling performance. Thin Walled Struct. 45(3), 339–351 (2007)CrossRefGoogle Scholar
  15. 15.
    Murphy, A., Lynch, F., Price, M., Gibson, A.: Modified stiffened panel analysis methods for laser beam and friction stir welded aircraft panels. Proc. Inst. Mech. Eng. Part G J. Aerospace Eng. 220(G4), 267–278 (2006)Google Scholar
  16. 16.
    Uz, M.V., Kocak, M., Lemaitre, F., Ehrstrom, J.C., Kempa, S., Bron, F.: Improvement of damage tolerance of laser beam welded stiffened panels for airframes via local engineering. Int. J. Fatigue 31(5), 916–926 (2009)CrossRefGoogle Scholar
  17. 17.
    Lohwasser, D., Chen, Z.: Friction Stir Welding: From Basics to Applications. CRC and Woodhead Publishing Ltd, Boca Raton (2009)Google Scholar
  18. 18.
    Mishra, R.S., Ma, Z. Y.: Friction stir welding and processing. Mat. Sci. Eng. R Rep. 50(1–2), 1–78 (2005)CrossRefGoogle Scholar
  19. 19.
    Mishra, R.S., Mahoney, M.W.: Friction Stir Welding and Processing. ASM International, New York (2007)Google Scholar
  20. 20.
    Nandan, R., DebRoy, T., Bhadeshia, H.K.D.H.: Recent advances in friction-stir welding—Process, weldment structure and properties. Prog. Mat. Sci. 53(6), 980–1023 (2008)CrossRefGoogle Scholar
  21. 21.
    Threadgill, P.L., Leonard, A.J., Shercliff, H.R., Withers, P.J.: Friction stir welding of aluminium alloys. Int. Mat. Rev. 54(2), 49–93 (2009)CrossRefGoogle Scholar
  22. 22.
    Cam, G., dos Santos, J.F., Kocak, M.: Laser and electron beam welding of Al-alloys: literature review. In: GKSS report (1997)Google Scholar
  23. 23.
    Byrne, G., Dornfeld, D., Denkena, B.: Advancing cutting technology. CIRP Ann. Manufact. Technol. 52(2), 483–507 (2003)CrossRefGoogle Scholar
  24. 24.
    Hibbit, D., Karlsson, B., Sorenson, P.: ABAQUS users manual, Karlsson Sorenson Inc., USA (2006)Google Scholar
  25. 25.
    DaToN.: Innovative fatigue and damage tolerance methods for the application of new structural concepts. Strengthening the competitiveness, specific targeted research project: a proposal for the 6th European framework program (2004)Google Scholar
  26. 26.
    Moreira, P.M.G.P., Richter-Trummer, V., Tavares, S.M.O., de Castro, P.M.S.T.: Characterization of fatigue crack growth rate of AA6056 T651 and T6: application to predict fatigue behaviour of stiffened panels. Mat. Sci. Forum 636637, 1511–1517 (2010)Google Scholar
  27. 27.
    Vaidya, W., Angamuthu, K., Kocak, M.: Effect of load ratio and temper on fatigue crack propagation behaviour of Al-Alloys 6056. In: 8th International fatigue congress—FATIGUE 2002. Stockholm, Sweden (2002)Google Scholar
  28. 28.
    Llopart, L., Kurz, B., Wellhausen, C., Anglada, M., Drechsler, K., Wolf, K.: Investigation of fatigue crack growth and crack turning on integral stiffened structures under mode I loading. Eng. Fract. Mech. 73(15), 2139–2152 (2006)CrossRefGoogle Scholar
  29. 29.
    Edwards, L., Fitzpatrick, M., Irving, P., Sinclair, I., Zhang, X., Yapp, D.: An integrated approach to the determination and consequences of residual stress on the fatigue performance of welded aircraft structures. J. ASTM Int. 3(2), 1–17 (2006)Google Scholar
  30. 30.
    Brot, A., Peleg-Wolfin, Y.: The damage-tolerance behaviour of integrally stiffened metallic structures. In: 48th Israel annual conference on aerospace sciences (2008)Google Scholar
  31. 31.
    Augustin, P.: Simulation of fatigue crack growth in the high speed machined panel under the constant amplitude and spectrum loading. In: 25th ICAF Symposium. Rotterdam (2009)Google Scholar
  32. 32.
    Augustin, P.: Prediction of crack growth in integrally stiffened panels. Letecký Zpravodaj’ 2, 5–7 (2007)Google Scholar
  33. 33.
    Tavares, S.M.O., Richter-Trummer, V., Moreira, P.M.G.P., de Castro, P.M.S.T.: Fatigue behavior of lightweight integral panels. In: 7th EUROMECH Solid Mechanics Conference. Lisbon, Portugal (2009)Google Scholar
  34. 34.
    Kunz, J., Kovárik, O., Lauschmanna, H., Siegla, J., Augustin, P.: Fractographic reconstitution of fatigue crack growth in integrally stiffened panels. Procedia Eng. 2, 1711–1720 (2010)Google Scholar
  35. 35.
    Moreira, P.M.G.P., de Castro, P.M.S.T.: Fractographic analysis of fatigue crack growth in lightweight integral stiffened panels. Int. J. Struct. Integ. (in press)Google Scholar
  36. 36.
    Brot, A., Peleg-Wolfin, Y., Kressel, I., Yosef, Z.: The use of composite material strips to extend the damage-tolerance life of integrally stiffened aluminum panels. In: 25th ICAF Symposium. Rotterdam (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • P. M. G. P. Moreira
    • 1
    Email author
  • V. Richter-Trummer
    • 2
  • P. M. S. T. de Castro
    • 2
  1. 1.INEGI, Institute of Mechanical Engineering and Industrial ManagementPortoPortugal
  2. 2.Faculdade de Engenharia da Universidade do Porto, and IDMEC-PortoPortoPortugal

Personalised recommendations