Skip to main content

Heat Transfer in Polyolefin Foams

  • Chapter
  • First Online:
Heat Transfer in Multi-Phase Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 2))

Abstract

This chapter is dedicated to the study of heat transfer in polyolefin-based foams, particularly thermal conductivity, as a function of their structure and chemical composition. A small review of the main experimental techniques used to measure the thermal conductivity of these materials is also given, focusing on the transient plane source method (TPS), as well as different theoretical models commonly used for estimating its value. Alongside cellular structure (cell size, anisotropy, etc) and composition considerations, particular importance is given to the analysis of the presence of micrometric and nanometric-sized fillers in the resulting cellular composite thermal properties. This is a novel research field of particular interest, thought to extend the application range of these lightweight materials by tailoring their conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glicksman, L.R.: Heat transfer in foams. In: Hilyard, N.C., Cunningham, A. (eds.) Low Density Cellular Plastics: Physical Basis of Behaviour, 1st edn. Chapman and Hall, UK (1994)

    Google Scholar 

  2. Leach, A.G.: The thermal conductivity of foams. I. Models for heat conduction. J Phys D Appl Phys 26, 733–739 (1993)

    Article  CAS  Google Scholar 

  3. Shen, J., Han, X., Lee, L.J.: Nanoscaled reinforcement of polystyrene foams using carbon nanofibers. J Cell Plast 42, 105–126 (2006)

    Article  CAS  Google Scholar 

  4. Yang, Y., Gupta, M.C., Dudley, K.L., Lawrence, R.W.: Conductive carbon nanofiber–polymer foam structures. Adv Mater 17, 1999–2003 (2005)

    Article  CAS  Google Scholar 

  5. Yang, Y., Gupta, M.C., Dudley, K.L., Lawrence, R.W.: Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5, 2131–2134 (2005)

    Article  CAS  Google Scholar 

  6. Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Mills, N.J., Gilcrist, A.: Creep and recovery of polyolefin foams – deformation mechanisms. J Cell Plast 33, 264–292 (1997)

    CAS  Google Scholar 

  8. Rodríguez-Pérez, M.A.: Crosslinked polyolefin foams: production, structure, properties, and applications. Adv Polym Sci 184, 97–126 (2005)

    Article  Google Scholar 

  9. Mills, N.: Polymer Foams Handbook, Engineering and Biomechanics Applications and Design Guide, 1st edn, pp. 46–47. Elsevier, Oxford (2007)

    Google Scholar 

  10. Klempner, D., Sendijarevic, V.: Polymeric Foams and Foam Technology, 2nd edn, pp. 275–288. Hanser, Munich (2004)

    Google Scholar 

  11. Martini, J.E., Suh, N.P., Waldman, F.A.: US Patent 4,473,665, 1984

    Google Scholar 

  12. Puri, R.R., Collington, K.T.: The production of cellular crosslinked polyolefins. 2. The injection-molding and press molding techniques. Cell Polym 7, 219–231 (1988)

    CAS  Google Scholar 

  13. UK Zotefoams: High performance polymers 2 (1999)

    Google Scholar 

  14. Goel, S.K., Beckman, E.J.: Generation of microcellular polymeric foams using supercritical carbon dioxide 1. Effect of pressure and temperature on nucleation. Polym Eng Sci 34, 1137–1147 (1994)

    Article  CAS  Google Scholar 

  15. Antunes, M., Haurie, L., Velasco, J.I.: Characterization of highly filled magnesium hydroxide-polypropylene composite foams. J Cell Plast. doi:10.1177/0021955X10370186 (2010)

    Google Scholar 

  16. Antunes, M., Realinho, V., Martínez, A.B., Solórzano, E., Rodríguez-Pérez, M.A., Velasco, J.I.: Heat transfer of mineral-filled polypropylene foams. Def Diff Forum 297–301, 990–995 (2010)

    Article  Google Scholar 

  17. Perry, D.L., Phillips, S.L.: Handbook of Inorganic Compounds. CRC, Boca Raton (1995)

    Google Scholar 

  18. Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87, 215502 (2001)

    Article  CAS  Google Scholar 

  19. Antunes, M., Velasco, J.I., Realinho, V., Arencón, D.: Characterization of carbon nanofibre-reinforced polypropylene foams. J Nanosci Nanotechnol 10, 1241–1250 (2010)

    Article  CAS  Google Scholar 

  20. Antunes, M., Realinho, V., Solórzano, E., Rodríguez-Pérez, M.A., de Saja, J.A., Velasco, J.I.: Thermal conductivity of carbon nanofibre–polypropylene composite foams. Def Diff Forum 297–301, 996–1001 (2010)

    Article  Google Scholar 

  21. Tye, R.P.: Proceedings of the “Cellular Polymers, an International Conference”. Rapra Technology Ltd, London (1991)

    Google Scholar 

  22. Tye, R.P., Coumou, K.G.: High Temp High Press 13, 695–704 (1981)

    Google Scholar 

  23. ASTM E1225 – 04 Standard test method for thermal conductivity of solids by means of the guarded–comparative–longitudinal heat flow technique

    Google Scholar 

  24. ISO 8302:1991; Thermal insulation – determination of steady-state thermal resistance and related properties – guarded hot plate apparatus

    Google Scholar 

  25. ISO 13787:2003 Thermal insulation products for building equipment and industrial installations

    Google Scholar 

  26. Log, T., Gustafsson, S.E.: Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater 19, 43–49 (1995)

    Article  CAS  Google Scholar 

  27. Miller, M.G., Keith, J.M., King, J.A., Edwards, B.J., Klinkenberg, N.: Measuring thermal conductivities of anisotropic synthetic graphite–liquid crystal polymer composites. Polym Compos 27, 388–394 (2006)

    Article  CAS  Google Scholar 

  28. Baba, T., Ono, A.: Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas Sci Technol 12, 2046–2057 (2001)

    Article  CAS  Google Scholar 

  29. ASTM E1461-07 Standard test method for thermal diffusivity by the flash method

    Google Scholar 

  30. E1461-92 Standard test method for thermal diffusivity of solids by the flash method

    Google Scholar 

  31. Tye, R.P., Kubicàr, L., Lockmuller, N.: The development of a standard for contact transient methods of measurement of thermophysical properties. Int. J. Thermophy 26, 1917–1938 (2005)

    Article  Google Scholar 

  32. Bouguerra, A., Ait-Mokhtar, A., Amiri, O., Diop, M.B.: Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building materials using transient plane source technique. Int Commun Heat Mass Transf 28, 1065–1078 (2001)

    Article  Google Scholar 

  33. Saxena, N.S.G., Pradeep, P., Mathew, G., Thomas, S., Gustafsson, M., Gustafsson, S.E.: Thermal conductivity of styrene butadiene rubber compounds with natural rubber prophylactics waste as filler. Eur Polym J 35, 1687–1693 (1999)

    Article  CAS  Google Scholar 

  34. Grujicic, M., Zhao, C.L., Biggers, S.B., Morgan, D.R.: Experimental investigation and modeling of effective thermal conductivity and its temperature dependence in a carbon-based foam. J Mater Sci 41, 2309–2317 (2006)

    Article  CAS  Google Scholar 

  35. Nishi, T., Shibata, H., Waseda, Y., Ohta, H.: Thermal conductivities of molten iron, cobalt, and nickel by laser flash method. Metall Mater Trans A 34, 2801–2807 (2003)

    Article  Google Scholar 

  36. Almanza, O., Rodríguez-Pérez, M.A., de Saja, J.A.: The measurement of the thermal diffusivity and heat capacity of polyethylene foams using the transient plane source technique. Polym Int 53, 2038–2044 (2004)

    Article  CAS  Google Scholar 

  37. Solórzano, E., Rodríguez-Pérez, M.A., Reglero, J.A., de Saja, J.A.: Density gradients in alumium foams: characterisation by computed tomography and measurements of the effective thermal conductivity. J Mater Sci 42, 2557–2564 (2007)

    Article  Google Scholar 

  38. Solórzano, E., Rodríguez-Pérez, M.A., de Saja, J.A.: Thermal conductivity of cellular metals measured by the transient plane source method. Adv Eng Mater 10, 596–602 (2008)

    Article  Google Scholar 

  39. Solórzano, E., Reglero, J.A., Rodríguez-Pérez, M.A., Lehmhus, D., Wichmann, M., de Saja, J.A.: An experimental study on the thermal conductivity of aluminium Foams by using the transient plane source method. Int J Heat Mass Transf 51, 6259–6267 (2008)

    Article  Google Scholar 

  40. Solórzano, E., Hirschmann, M., Rodríguez-Pérez, M.A., Körner, C., de Saja, J.A.: Thermal conductivity of AZ91 magnesium integral foams measured by the transient plane source method. Mater Lett 62, 3960–3962 (2008)

    Article  Google Scholar 

  41. Gustavsson, M., Karawacki, E., Gustafsson, S.E.: Thermal conductivity, thermal diffusivity and specific heat of thin samples from transient measurement with hot disk sensors. Rev Sci Instrum 65, 3856–3859 (1994)

    Article  CAS  Google Scholar 

  42. Almanza, O., Rodríguez-Pérez, M.A., de Saja, J.A.: Applicability of the transient plane source method to measure the thermal conductivity of low density polyethylene foams. J Polym Sci B Polym Phys 42, 1226–1234 (2004)

    Article  CAS  Google Scholar 

  43. Coquard, R., Baillis, D.: Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater 57, 5466–5479 (2009)

    Article  CAS  Google Scholar 

  44. Schuetz, M.A., Glicksman, L.R.: Heat Transfer in Foam Insulation. Massachusetts Institute of Technology, Cambridge, MA (1982)

    Google Scholar 

  45. Ahern, A., Verbist, G., Weaire, D., Phelan, R., Fleurent, H.: The conductivity of foams: a generalisation of the electrical to the thermal case. Colloids Surf A Phys Eng Asp 263, 275–279 (2005)

    Article  CAS  Google Scholar 

  46. Kaviany, M.: Principles of Heat Transfer in Porous Media (Mechanical Engineering Series), 2nd edn. Springer, Berlin (1999)

    Google Scholar 

  47. Williams, R.J.J., Aldao, C.M.: Thermal conductivity of plastic foams. Polym Eng Sci 6, 293–298 (1983)

    Article  Google Scholar 

  48. Almanza, O., Rodríguez-Pérez, M.A., de Saja, J.A.: Prediction of the radiation term in the thermal conductivity of crosslinked closed cell polyolefin foams. J Polym Sci B Polym Phys 38, 993–1004 (2000)

    Article  CAS  Google Scholar 

  49. Rodríguez-Pérez, M.A., González-Peña, J.I., Witten, N., de Saja, J.A.: The effect of cell size on the physical properties of crosslinked closed cell polyethylene foams produced by a high pressure nitrogen solution process. Cell Polym 21, 165–194 (2002)

    Google Scholar 

  50. Kuhn, J., Ebert, H.P., Arduini-Schuster, M.C., Büttner, D., Fricke, J.: Thermal transport in polystyrene and polyurethane foam insulations. Int J Heat Mass Transf 35, 1795–1801 (1992)

    Article  CAS  Google Scholar 

  51. Russel, R.H.: Principles of heat flow in porous insulators. J Am Ceram Soc 18, 1–5 (1935)

    Article  Google Scholar 

  52. Bedeaux, D., Kapral, R.: The effective reaction rate and diffusion coefficients for a two-phase medium. J Chem Phys 79, 1783–1788 (1983)

    Article  CAS  Google Scholar 

  53. Boetes, R., Hoogendoorn, C.J.: Heat transfer in polyurethane foams for cold insulation. Proc. Int. Symp. Heat Mass Transf 24, 14–31 (1987)

    CAS  Google Scholar 

  54. Loeb, A.L.: Thermal conductivity: VIII, A theory of thermal conductivity of porous materials. J Am Ceram Soc 37, 96–99 (1954)

    Article  CAS  Google Scholar 

  55. Francl, J., Kingery, W.D.: Thermal conductivity: IX. Experimental investigation of effect of porosity on thermal conductivity. J Am Ceram Soc 37, 99–107 (1954)

    Article  CAS  Google Scholar 

  56. Batty, W.J., Probert, S.D., O’Callaghan, P.W.: Apparent thermal conductivities of high-porosity cellulary insulants. Appl Energy 18, 117–135 (1984)

    Article  CAS  Google Scholar 

  57. Sims, G.L.A., Khunniteekool, C.: Cell size measurement of polymeric foams. Cell Polym 13, 137–146 (1994)

    Google Scholar 

  58. Almanza, O., Rodríguez-Pérez, M.A., de Saja, J.A.: The thermal conductivity of polyethylene foams manufactured by a nitrogen solution process. Cell Polym 18, 385–401 (1999)

    CAS  Google Scholar 

  59. Román-Lorza, S., Rodríguez-Pérez, M.A., de Saja, J.A., Zurro, J.: Cellular structure of EVA/ATH halogen-free flame-retardant foams. J Cell Plast 46, 259–279 (2010)

    Article  Google Scholar 

  60. Zhang, G., Xia, Y., Wang, H., Tao, Y., Tao, G., Tu, S., Wu, H.: A percolation model of thermal conductivity for filled polymer composites. J Compos Mater 44, 963–970 (2010)

    Article  CAS  Google Scholar 

  61. Berber, S., Kwon, Y.K., Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84, 4613–4616 (2000)

    Article  CAS  Google Scholar 

  62. Che, J., Cagin, T., Goddard, W.A.: Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65–69 (2000)

    Article  CAS  Google Scholar 

  63. Osman, M., Srivastava, D.: Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12, 21 (2001)

    Article  CAS  Google Scholar 

  64. Yi, W., Lu, L., Dian-lin, Z., Pan, Z.W., Xie, S.S.: Linear specific heat of carbon nanotubes. Phys Rev B 59, R9015–R9018 (1999)

    Article  CAS  Google Scholar 

  65. Shaffer, M.S.P., Sandler, J.K.W.: Carbon nanotube/nanofibre polymer composites. In: Advani, S.G. (ed.) Processing and Properties of Nanocomposites. World Scientific, Singapore (2006)

    Google Scholar 

Download references

Acknowledgements

Financial assistance from the Local Government (Junta of Castile and Leon, Excellence Group GR39), Spanish Ministry of Science and Innovation and FEDER program (projects MAT 2007-62956, MAT 2009 14001-C02-01 and postdoctoral grant 2008-0946) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Antunes, M., Velasco, J.I., Solórzano, E., Rodríguez‐Pérez, M.Á. (2010). Heat Transfer in Polyolefin Foams. In: Öchsner, A., Murch, G. (eds) Heat Transfer in Multi-Phase Materials. Advanced Structured Materials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_44

Download citation

Publish with us

Policies and ethics