Skip to main content

Continuum Modeling of Diffusive Transport in Inhomogeneous Solids

  • Chapter
  • First Online:
Heat Transfer in Multi-Phase Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 2))

  • 2264 Accesses

Abstract

General features of homogenization and localization in studying the conduction behavior of inhomogeneous materials are introduced and two groups of methods for solving such problems are presented. First, mean field and bounding approaches are discussed and comparisons between the predictions of relevant methods are given. Next, modeling approaches to studying discrete microstructures are covered, the main emphasis being put on periodic homogenization and windowing procedures. Finally, an application of the methods to diamond particle reinforced aluminum is presented, in which interfacial effects play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auriault, J.: Effective macroscopic description for heat conduction in periodic composites. Int J Heat Mass Transf 26, 861–869 (1983)

    Article  Google Scholar 

  2. Auriault, J.: Upscaling heterogeneous media by asymptotic expansions. J Eng Mech ASCE 128, 817–822 (2002)

    Article  Google Scholar 

  3. Beasley, J., Torquato, S.: Bounds on the conductivity of a suspension of random impenetrable spheres. J Appl Phys 60, 3576–3581 (1986)

    Article  Google Scholar 

  4. Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6, 147–157 (1987)

    Article  Google Scholar 

  5. Böhm, H.: A Short Introduction to Basic Aspects of Continuum Micromechanics. Tech. Rep. (ILSB Arbeitsbericht 206), TU Wien, Vienna, Austria (2009). http://www.ilsb.tuwien.ac.at/links/downloads/ilsbrep206.pdf

  6. Böhm, H., Nogales, S.: Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos Sci Technol 68, 1181–1187 (2008)

    Article  Google Scholar 

  7. Böhm, H., Pahr, D., Daxner, T.: Analytical and numerical methods for modeling the thermomechanical and thermophysical behavior of microstructured materials. In: Silberschmidt, V. (ed.) Computational and Experimental Mechanics of Advanced Materials. CISM Courses and Lectures, vol. 514, pp. 167–223. Springer, Vienna, Austria (2009)

    Chapter  Google Scholar 

  8. Bruggemann, D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 24, 636–679 (1935)

    Article  Google Scholar 

  9. Buryachenko, V.: Micromechanics of Heterogeneous Materials. Springer, New York, NY (2007)

    Book  Google Scholar 

  10. Duan, H., Karihaloo, B., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys Rev B, 174203 (2006)

    Google Scholar 

  11. Duschlbauer, D.: Computational Simulation of the Thermal Conductivity of MMCs under Consideration of the Inclusion–Matrix Interface. Reihe 5, Nr.561, VDI-Verlag, Düsseldorf, Germany (2004)

    Google Scholar 

  12. Duschlbauer, D., Pettermann, H., Böhm, H.: Heat conduction of a spheroidal inhomogeneity with imperfectly bonded interface. J Appl Phys 94, 1539–1549 (2003)

    Article  CAS  Google Scholar 

  13. Duschlbauer, D., Pettermann, H., Böhm, H.: Numerical simulation of the thermal conductivity of MMCs – the effect of thermal interface resistance. Mater Sci Technol 19, 1107–1114 (2003)

    Article  CAS  Google Scholar 

  14. Duschlbauer, D., Böhm, H., Pettermann, H.: Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches. J Compos Mater 40, 2217–2234 (2006)

    Article  CAS  Google Scholar 

  15. Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A Math Phys Sci 241, 376–396 (1957)

    Article  Google Scholar 

  16. Ferrari, M.: Asymmetry and the high concentration limit of the Mori–Tanaka effective medium theory. Mech Mater 11, 251–256 (1991)

    Article  Google Scholar 

  17. Fiedler, T, Belova, IV., øchsner, A, Murch, GE.: Lattice Monte Carlo analysis of thermal diffusion in multi-phase materials. Springer, Heidelberg (2011). doi:10.1007/8611_2010_6

  18. Flaquer, J., Ríos, A., Martín-Meizoso, A., Nogales, S., Böhm, H.: Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comput Mater Sci 41, 156–163 (2007)

    Article  CAS  Google Scholar 

  19. Furmański, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl Mech Rev 50, 327–356 (1997)

    Article  Google Scholar 

  20. Giraud, A., Gruescu, C., Do, D., Homand, F., Kondo, D.: Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44, 2627–2647 (2007)

    Article  CAS  Google Scholar 

  21. Harte, A., McNamara, J.: Use of micromechanical modelling in the material characterisation of overinjected thermoplastic composites. J Mater Process Technol 173, 376–383 (2006)

    Article  CAS  Google Scholar 

  22. Hashin, Z.: Analysis of composite materials – a survey. J Appl Mech Trans ASME 50, 481–505 (1983)

    Article  Google Scholar 

  23. Hashin, Z.: The differential scheme and its application to cracked materials. J Mech Phys Solids 36, 719–733 (1988)

    Article  Google Scholar 

  24. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33, 3125–3131 (1962)

    Article  CAS  Google Scholar 

  25. Hasselman, D., Donaldson, K.: Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J Am Ceram Soc 75, 3137–3140 (1992)

    Article  CAS  Google Scholar 

  26. Hasselman, D., Johnson, L.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21, 508–515 (1987)

    Article  Google Scholar 

  27. Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58, 2478–2486 (1985)

    Article  CAS  Google Scholar 

  28. Hazanov, S.: Hill condition and overall properties of composites. Arch Appl Mech 68, 385–394 (1998)

    Article  Google Scholar 

  29. Hill, R.: A self-consistent mechanics of composite materials. J Mech Phys Solids 13, 213–222 (1965)

    Article  Google Scholar 

  30. Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15, 79–95 (1967)

    Article  CAS  Google Scholar 

  31. Jiang, M., Ostoja-Starzewski, M., Jasiuk, I.: Scale-dependent bounds on effective elastoplastic response of random composites. J Mech Phys Solids 49, 655–673 (2001)

    Article  CAS  Google Scholar 

  32. Kenesei, P., Borbély, A., Biermann, H.: Microstructure based three-dimensional finite element modeling of particulate reinforced metal matrix composites. Mater Sci Eng A Struct 387, 852–856 (2004)

    Article  Google Scholar 

  33. Kerner, E.: The electrical conductivity of composite media. Proc Phys Soc B 69, 802–807 (1956)

    Article  Google Scholar 

  34. Lipton, R., Talbot, D.: Bounds for the effective conductivity of a composite with an imperfect interface. Proc R Soc Lond A Math Phys Sci 457, 1501–1517 (2001)

    Article  Google Scholar 

  35. Markov, K.: Elementary micromechanics of heterogeneous media. In: Markov, K., Preziosi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhäuser, Boston, MA (2000)

    Google Scholar 

  36. Matt, C., Cruz, M.: Application of a multiscale finite-element approach to calculate the effective thermal conductivity of particulate media. Comput Appl Math 21, 429–460 (2002)

    Google Scholar 

  37. Matt, C., Cruz, M.: Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance. Numer Heat Transf A 53, 577–604 (2008)

    Article  Google Scholar 

  38. Matt, CF, Cruz, ME.: Heat conduction in two-phase composite materials with three-dimensional microstructures and interfacial thermal resistance. Springer, Heidelberg (2011). doi:10.1007/8611_2010_10

  39. Maxwell, J.: Treatise on Electricity and Magnetism. Clarendon, Oxford (1873)

    Google Scholar 

  40. Michel, J., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172, 109–143 (1999)

    Article  Google Scholar 

  41. Miller, C., Torquato, S.: Effective conductivity of hard sphere suspensions. J Appl Phys 68, 5486–5493 (1990)

    Article  Google Scholar 

  42. Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  43. Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21, 571–574 (1973)

    Article  Google Scholar 

  44. Nogales, S.: Numerical Simulation of the Thermal and Thermomechanical Behavior of Metal Matrix Composites. Reihe 18, Nr.317, VDI–Verlag, Düsseldorf, Germany (2008)

    Google Scholar 

  45. Nogales, S., Böhm, H.: Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. Int J Eng Sci 46, 606–619 (2008)

    Article  CAS  Google Scholar 

  46. Nye, J.: Physical Properties of Crystals, Their Representation by Tensors and Matrices. Clarendon, Oxford (1957)

    Google Scholar 

  47. Ostoja-Starzewski, M.: Random field models of heterogeneous materials. Int J Solids Struct 35, 2429–2455 (1998)

    Article  Google Scholar 

  48. Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys Rev B 54, 278–285 (1996)

    Article  CAS  Google Scholar 

  49. Persson, L.: Computing effective thermal conductivities of composite materials by the homogenization method. PhD thesis, Luleå Tekniska Universitet, Luleå, Sweden (1986)

    Google Scholar 

  50. Phan-Tien, N., Pham, D.: Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity. Int J Eng Sci 38, 73–88 (2000)

    Article  Google Scholar 

  51. Ponte Castañeda, P., Willis, J.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43, 1919–1951 (1995)

    Article  Google Scholar 

  52. Progelhof, R., Throne, R., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16, 615–625 (1976)

    Article  CAS  Google Scholar 

  53. Rintoul, M., Torquato, S.: Reconstruction of the structure of dispersions. J Colloid Interface Sci 186, 467–476 (1997)

    Article  CAS  Google Scholar 

  54. Ruch, P., Beffort, O., Kleiner, S., Weber, L., Uggowitzer, P.: Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66, 2677–2685 (2006)

    Article  CAS  Google Scholar 

  55. Segurado, J.: Micromecánica computacional de materiales compuestos reforzados con partículas. PhD thesis, Universidad Politécnica de Madrid, Spain (2004)

    Google Scholar 

  56. Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling. Comput Method Appl Mech Eng 155, 181–192 (1998)

    Article  Google Scholar 

  57. Terada, K., Kikuchi, N.: Microstructural design of composites using the homogenization method and digital images. Mater Sci Res Int 2, 65–72 (1996)

    CAS  Google Scholar 

  58. Torquato, S.: Effective electrical conductivity of two-phase disordered composite media. J Appl Phys 58, 3790–3797 (1985)

    Article  Google Scholar 

  59. Torquato, S.: Random Heterogeneous Media. Springer, New York, NY (2002)

    Google Scholar 

  60. Torquato, S., Rintoul, D.: Effect of the interface on the properties of composite media. Phys Rev Lett 75, 4067–4070 (1995)

    Article  CAS  Google Scholar 

  61. Weng, G.: The theoretical connection between Mori–Tanaka theory and the Hashin–Shtrikman–Walpole bounds. Int J Eng Sci 28, 1111–1120 (1990)

    Article  Google Scholar 

  62. Wiener, O.: Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abh Math-Phys Kl Königl Sächs Ges Wiss 32, 509–604 (1912)

    Google Scholar 

  63. Willis, J.: Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J Mech Phys Solids 25, 185–202 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut J. Böhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Böhm, H.J., Pettermann, H.E., Nogales, S. (2010). Continuum Modeling of Diffusive Transport in Inhomogeneous Solids. In: Öchsner, A., Murch, G. (eds) Heat Transfer in Multi-Phase Materials. Advanced Structured Materials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_43

Download citation

Publish with us

Policies and ethics