Skip to main content

Mechanics of Cellulose Nanocrystals and their Polymer Composites

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 4))

Abstract

The fabrication of cellulose nanocomposites with ultimate mechanical properties has received tremendous attention during the past decade. However, the published data has not been reviewed and systematically compared from mechanical point of view. The current study aims to fill this gap by providing a critical review on the published data on the mechanics of cellulose nanocrystals and their composites. The studies on individual cellulose nanocrystals show that their strength depends on the number and type of inter and intra hydrogen bonds on the cellulose chains, which are affected by the cellulose type and origin. It has been shown that the tensile modulus, yield strength and creep resistance are higher in cellulose nanocomposites than in unfilled polymers. However, above optimum cellulose content, the agglomeration of nanocrystals degrades the mechanical properties. Furthermore, cellulose nanocrystals enhance the structural stiffness of polymer composites at elevated temperatures. Formation of rigid nanocrystal network causes increase in the storage modulus (E′) and glass transition temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alemdar, A., Sain, M.: Biocomposites, from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos. Sci. Technol. 68, 557–565 (2007)

    Google Scholar 

  2. Angles, M.N., Dufrense, A.: Plasticized starch/tunicin whisker nanocomposite materials 2: mechanical behavior. Macromolecules 34, 2921–2931 (2001)

    Article  CAS  Google Scholar 

  3. Auad, M.L., Contos, V.S., Nutt, S., et al.: Characterization of nanocellulose reinforced shape memory polyurethanes. Polym. Int. 57, 651–659 (2008)

    Article  CAS  Google Scholar 

  4. Azizi Samir, M., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their applications in nanocomposite field. Biomacromolecules 6, 612–626 (2005)

    Article  Google Scholar 

  5. Azizi Samir, M., Alloin, F., Sanchez, J., et al.: Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45, 4149–4157 (2004a)

    Google Scholar 

  6. Azizi Samir, M., Alloin, F., Sanchez, J., et al.: Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37, 1386–1393 (2004b)

    Google Scholar 

  7. Bondeson, D., Mathew, A., Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006)

    Article  CAS  Google Scholar 

  8. Bodenson, D., Oksman, K.: Dispersion and characterization of surfactant modified cellulose whiskers nanocomposites. Compos. Interfaces 14, 617–630 (2007)

    Article  Google Scholar 

  9. Bozzola, J.J., Russell, L.D.: Electron microcopy: principles and techniques for biologists. Jones and Bartlett Publishers, Boston (1992)

    Google Scholar 

  10. Beck-Candanedo, S., Roman, M., Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048–1054 (2005)

    Article  CAS  Google Scholar 

  11. Beecher, J.: Wood, trees and nanotechnology. Nat. Nanotechnol. 2, 1–2 (2007)

    Article  Google Scholar 

  12. Brown, E.E., Laborie, M.G.: Bioengineering bacterial cellulose/poly (ethylene oxide) nanocomposites. Biomacromolecules 8, 3074–3081 (2007)

    Article  CAS  Google Scholar 

  13. Cao, X., Dong, H., Li, C.M.: New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8, 899–904 (2007)

    Article  CAS  Google Scholar 

  14. Carotenuto, G.C., Her, Y.S., Matijevic, E.: Preparation and characterization of nanocomposite thin films for optical devices. Ind. Eng. Chem. Res. 35, 2929–2932 (1996)

    Article  CAS  Google Scholar 

  15. Cheng, Q., Wang, S.: A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy. Composites 39, 1838–1843 (2008)

    Article  Google Scholar 

  16. Choi, Y., Simonsen, J.: Cellulose nanocrystal-filled carboxymethyle cellulose nanocomposites. J. Nanosci. Nanotechnol. 6, 633–639 (2006)

    Article  CAS  Google Scholar 

  17. Daniel, I.M., Ishai, O.: Engineering mechanics of composite materials. Oxford University Press, New York (1994)

    Google Scholar 

  18. Dufresne, A., Cavaille, J., Helbert, W.: Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part 2. Effect of processing and modeling. Polym. Compos. 18, 198–210 (1997)

    Article  CAS  Google Scholar 

  19. Dufresne, A., Dupeyre, D., Vignon, M.R.: Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J. Appl. Polym. Sci. 76, 2080–2092 (2000)

    Article  CAS  Google Scholar 

  20. Eichhorn, S.J., Sirichaisit, J., Young, R.J.: Deformation mechanisms in cellulose fibers, paper and wood. J. Mat. Sci. 36, 3129–3135 (2001a)

    Article  CAS  Google Scholar 

  21. Eichhorn, S.J., Young, R.J., Yeh, W.Y.: Deformation processes in regenerated cellulose fibers. Text. Res. J. 71, 121–129 (2001b)

    Article  CAS  Google Scholar 

  22. Elazzouzi-Hafraoui, S., Nishiyama, Y., Pataux, J., Heux, L., Dubreuil, F., Rochas, C.: The shape and size distribution on crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9, 57–65 (2008)

    Article  CAS  Google Scholar 

  23. Favier, V., Chanzy, H., Cavaille, J.Y.: Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365–6367 (1995)

    Article  CAS  Google Scholar 

  24. Favier, V., Ganova, G.R., Shrivastava, S.C., Cavaille, J.Y.: Mechanical percolation in cellulose whisker nanocomposites. Poly. Eng. Sci. 37, 1732–1739 (1997)

    Article  CAS  Google Scholar 

  25. George, J., Sreekala, M.S., Thomas, S.: A review on interface modification and characterization of natural fiber reinforced plastic composites. Poly. Eng. Sci. 41, 1471–1485 (2001)

    Article  CAS  Google Scholar 

  26. Giannelis, E.P.: Polymer-layered silicate nanocomposites. Adv. Mater. 8, 2935 (1996)

    Article  CAS  Google Scholar 

  27. Glasser, W.G.: Prospects for future applications of cellulose acetate. Macromol. Symp. 208, 371–394 (2004)

    Article  CAS  Google Scholar 

  28. Gopalan Nair, K., Dufresne, A., Gandini, A., Belgacem, M.N.: Crab shell chitin whiskers reinforced natural rubber nanocomposites 3.Effect of chemical modofocation of chitin whiskers. Biomacromolecules 4, 1832–1835 (2003)

    Google Scholar 

  29. Grunert, M., Winter, W.T.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10, 27–30 (2002)

    Article  CAS  Google Scholar 

  30. Guhados, G., Wan, W., Hutter, J.L.: Measurement of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21, 6642–6646 (2005)

    Article  CAS  Google Scholar 

  31. Habibi, Y., Dufresne, A.: Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9, 1974–1980 (2008)

    Article  CAS  Google Scholar 

  32. Hajji, P., Cavaille, J.Y., Favier, V., Gauthier, C., Vigier, G.: Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym. Compos. 17, 612–619 (1996)

    Article  CAS  Google Scholar 

  33. Hamad, W.: On the development and applications of cellulosic nanofibrillar and nanocrystalline materials.Can. J. Chem. Eng. 84, 513–519 (2006)

    Article  CAS  Google Scholar 

  34. Harris, B.: Engineering composite materials. IOM Communications Ltd., London (1999)

    Google Scholar 

  35. Helbert, W., Cavaille, J.Y., Dufresne, A.: Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior Polym. Compos. 17, 604–611 (1996)

    Article  CAS  Google Scholar 

  36. Heux, L., Chauve, G., Bonnini, C.: Nanoflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16, 8210–8212 (2000)

    Article  CAS  Google Scholar 

  37. Hongmei, W., Chen, Z., Fang, P., et al.: Synthesis, characterization and optical properties of hybridized CdS-PVA nanocomposites. Mater. Chem. Phys. 106, 443–446 (2007)

    Article  Google Scholar 

  38. Hsieh, Y.C., Yano, H., Nogi, M., et al.: An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15, 507–513 (2008)

    Article  CAS  Google Scholar 

  39. Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M.: Cellulose nanocomposites: a review. Bioresources 3, 925–980 (2008)

    Google Scholar 

  40. Iwamoto, S., Kai, W., Isogai, A., Iwata, T.: Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10, 2571–2576 (2009)

    Article  CAS  Google Scholar 

  41. Kojima, Y., Usuki, A., Kawasumi, M., et al.: One-pot synthesis of nylon-6 clay hybrid. J. Polym. Sci. Part A Polym. Chem. 31, 1755–1758 (1993)

    Article  CAS  Google Scholar 

  42. Kojimia, Y., Usuki, A., Okada, A.: J. Polym. Sci. Part A Polym. Chem. 35, 2289 (1997)

    Google Scholar 

  43. Kong, K., Eichhorn, S.J.: The influence of hydrogen bonding on the deformation micromechanics of cellulose fibers. J. Macromol. Sci. B Phys. 44, 1123–1136 (2005)

    Article  CAS  Google Scholar 

  44. Koo, C.M., Kim, M.J., Choi, M.H., et al.: Mechanical and rheological properties of the maleated polypropylene-layered silicate nanocomposites with different morphology. J. Appl. Polym. Sci. 88, 1526–1535 (2003)

    Article  CAS  Google Scholar 

  45. Kroon, L.M.J., Kroon, L., Northolt, M.G.: Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym. Commun. 27, 290–292 (1986)

    Article  Google Scholar 

  46. Kvien, I., Sugiyama, J., Votrubec, M., et al.: Characterization of starch based nanocomposites. J. Mater. Sci. 42, 8163–8171 (2007)

    Article  CAS  Google Scholar 

  47. Kvien, I., Tanem, B.S., Oksman, K.: Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6, 3160–3165 (2005)

    Article  CAS  Google Scholar 

  48. Lapa, V.L.C., Suarez, J.C.M., Visconte, L.L.Y., et al.: Fracture behavior of nitrile rubber-cellulose II nanocomposites. J. Mater. Sci. 42, 9934–9939 (2007)

    Article  CAS  Google Scholar 

  49. Lee, S., Wang, S., Pharr, G.M., et al.: Evaluation of interphase properties in a cellulose fiber reinforced polypropylene composites by nanoindentation and finite element analysis. Composites 38, 1517–1524 (2007)

    Article  Google Scholar 

  50. Ljungberg, N., Cavaille, J.Y., Heux, L.: Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47, 6285–6292 (2006)

    Article  CAS  Google Scholar 

  51. Lyons, W.J.: Theoretical value of the dynamic stretch modulus of cellulose. J. Appl. Phys. 30, 796–797 (1959)

    Article  CAS  Google Scholar 

  52. Lu, Y., Weng, L., Cao, X.: Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch bio composites. Carbohydr. Polym. 63, 198–204 (2006)

    Article  CAS  Google Scholar 

  53. Mann, J., Roldan-Gonzalez, L.: X-Ray measurements of the elastic modulus of cellulose crystals. Polymer 3, 549–553 (1962)

    Article  CAS  Google Scholar 

  54. Marcovich, N.E., Auad, M.L., Bellesi, N.E., et al.: Cellulose micro/nanocrystals reinforced polyurethane. J. Mater. Res. 21, 870–881 (2006)

    Article  CAS  Google Scholar 

  55. Meyer, K.H., Lotmar, W.: Helvetica Chem. Acta. 19, 68 (1936).

    Google Scholar 

  56. Mi, Y., Zhang, X., Zhou, S., et al.: Morphological and mechanical properties of bile salt modified multi-walled carbon nanotube/poly(vinyl alcohol) nanocomposites. Compos. Part A Appl. Sci. Manuf. 38(n9), 2041–2046 (2007)

    Google Scholar 

  57. Mohanty, A.K., Misra, M., Drzal, L.T.: Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos. Interfaces 8, 313–343 (2001)

    Article  CAS  Google Scholar 

  58. Muller, F.A., Muller, L., Hofmann, I., et al.: Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27, 3955–3963 (2006)

    Article  Google Scholar 

  59. Nakagaito, A.N., Iwamoto, S., Yano, H.: Bacterial cellulose: the ultimate nano-scalar cellulose morphology for production of high strength composites. Appl. Phys. 80, 93–97 (2005)

    Article  CAS  Google Scholar 

  60. Nishino, T., Takano, K., Nakamae, K.: Elastic modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci. B Polym. Phys. 33, 1647–1651 (1995)

    Article  CAS  Google Scholar 

  61. Noorani, S., Simonsen, J., Atre, S.: Nanoenabled microtechnology: Polysulsone nanocomposites incorporating cellulose nanocrystals. Cellulose 14, 577–584 (2007)

    Article  CAS  Google Scholar 

  62. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sending indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  63. Orts, W.J., Shey, J., Imam, S.H., Glenn, G.M.: Guttman M E, Revol J, Application of cellulose microfibrils on polymer nanocomposites. J. Polym. Environ. 13, 301–306 (2005)

    Article  CAS  Google Scholar 

  64. Peng, Z., Xue, L.X., Li, S.D.: Dynamic mechanical analysis of polyvinylalcohol/silica nanocomposite. Synth. Met. 152(n1–3), 25–28 (2005)

    Google Scholar 

  65. Petersoon, L., Kvien, I., Oksman, K.: Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Tech. 67, 2535–2544 (2007)

    Article  Google Scholar 

  66. Roman, M., Winter, W.T.: Cellulose nanocrystals. From discovery to application TAPPI international conference on nanotechnology, Atlanta. Georgia (2006)

    Google Scholar 

  67. Roohani, M., Habibi, Y., Belgasem, N.M., Ebahim G.: Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44, 2489–2498 (2008)

    Article  CAS  Google Scholar 

  68. Rusli, R., Eichhorn, S.J.: Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl. Phys. Lett. 93, 033111 (2008)

    Article  Google Scholar 

  69. Sakurada, I., Nukushina, Y., Ito, T.: Experimental determination of the elastic modulus of the crystalline regions in oriented polymers. J. Polym. Sci. 57, 651–660 (1962)

    Article  CAS  Google Scholar 

  70. Sawyer, L.C., Grubb, D.T.: Polymer microcopy 2nd edition. Chapman and Hall, London, New York (1996)

    Google Scholar 

  71. Schmidt, H., Krug, H., Kasemann, R., et al.: Development of optical waveguides by sol-gel techniques for laser patterning. Proc. SPIE Int. Soc. Opt. Eng. 1590, 36–43 (1991)

    Article  CAS  Google Scholar 

  72. Shibata, M., Oyamada, S., Kobayashi, S., et al.: Mechanical composites and biodegragability of green composites based on biodegradable polyesters and lyocell fabric. J. Appl. Polym. Sci. 92, 3857–3863 (2004)

    Article  CAS  Google Scholar 

  73. Sturcova, A., Davies, G.R., Eichhorn, S.J.: Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055–1061 (2005)

    Article  CAS  Google Scholar 

  74. Tanaka, F., Iwata, T.: Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13, 509–517 (2006)

    Article  CAS  Google Scholar 

  75. Tashiro, K., Kobayashi, M.: Theoretical evaluation of three-dimensional elastic constants of native and regenerated cellulose: role of hydrogen bonds. Polymer 32, 1516–1526 (1991)

    Article  CAS  Google Scholar 

  76. Tranchida, D., Piccarolo, S., Loos, J., Alexeev, A.: Mechanical characterization of polymers on nanometer scale through nanoindentation. A study on pile-up and viscoelasticity. Macromolecules 40, 1259–1267 (2007)

    Article  CAS  Google Scholar 

  77. Treloar, L.R.G.: Calculation of elastic moduli of polymer crystals: III. Cellulose Polym. 1, 290–303 (1960)

    Google Scholar 

  78. Vaia, R.A., Ishii, H., Giannelis, E.P.: Synthesis and properties of 2D nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694–1696 (1996)

    Article  Google Scholar 

  79. Wang, Y., Cao, X., Zhang, L.: Effect of cellulose whiskers on properties of soy protein thermoplastics. Macromol. Biosci. 6, 524–531 (2006)

    Article  CAS  Google Scholar 

  80. Wang, B., Sain, M.: Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos. Sci. Tech. 67, 2521–2527 (2007)

    Article  CAS  Google Scholar 

  81. Wung, C.J., Yang, Y., Prasat, P.N., et al.: Poly(p-phenylene vinylene)-silica composite. A novel sol-gel processed non-linear optical material for optical waveguides. Polymer 32, 605–608 (1991)

    Article  CAS  Google Scholar 

  82. Yongshang, L., Weng, L., Cao, X.: Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites, Carbohyd. Polym. 63, 198–204 (2005)

    Google Scholar 

  83. Yu, M.F., Lourie, O., Dyer, M.J., et al.: Strength and breaking mechanism of multi walled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Article  CAS  Google Scholar 

  84. Zimmermann, T., Pohler, E., Schwaller, P.: Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv. Eng. Mater. 7, 1156–1161 (2005)

    Article  CAS  Google Scholar 

  85. Zugenmaier, P.: Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26, 1341–1417 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michigan Technological University for providing the financial support to conduct this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza S. Yassar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pakzad, A., Yassar, R.S. (2010). Mechanics of Cellulose Nanocrystals and their Polymer Composites. In: Öchsner, A., Shokuhfar, A. (eds) New Frontiers of Nanoparticles and Nanocomposite Materials. Advanced Structured Materials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_38

Download citation

Publish with us

Policies and ethics