Science of Friction–Adhesive Joints

  • Eugenio DragoniEmail author
  • Pierfranco Mauri
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 6)


This chapter addresses the fundamental properties of hybrid friction–adhesive joints which combine any form of mechanical tightening (stimulus for friction forces) with anaerobic adhesives. By filling the voids around the microareas of true metal-to-metal contact between the mating parts, anaerobic adhesives allow the full area involved by the engagement to be usefully exploited. Advantages ranging from sealing action, fretting suppression, noise reduction and enhanced strength derive from this combination. The focus of the chapter is on predicting the mechanical strength of these joints. The literature covering the static and the fatigue strength is reviewed showing that proper choice of the adhesive can increase the overall strength of the joint well above the strength of the purely mechanical joint based on friction only. Simple equations are also provided for the strength calculation of practical engineering assemblies.


Contact Pressure Fatigue Strength Static Strength Adhesive Joint Ideal Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akisanya, A.R.: On the singular stress field near the edge of bonded joints. J. Strain Anal. 32, 301–311 (1997)CrossRefGoogle Scholar
  2. 2.
    Bartolozzi, G., Croccolo, D., Chiapparini, M.: Research on shaft-hub adhesive and compression coupling. ÖIAZ 144, 198–201 (1999)Google Scholar
  3. 3.
    Canyurt, O.E.: Fatigue strength estimation of adhesively bonded tubular joint using genetic algorithm approach. Int. J. Mech. Sci. 46, 359–370 (2004)CrossRefGoogle Scholar
  4. 4.
    Croccolo, D., De Agostinis, M., Vincenzi, N.: Static and dynamic strength evaluation of interference fit and adhesively bonded cylindrical joints. Int. J. Adhes. Adhes. 30, 359–366 (2010)CrossRefGoogle Scholar
  5. 5.
    Dixon, W.J., Massey, Jr F.J.: Introduction to Statistical Analysis, 4th edn, pp 434–438. McGraw-Hill, New York (1985)Google Scholar
  6. 6.
    Dragoni, E.: Effect of anaerobic threadlockers on the fatigue strength of threaded connections. Int. J. Mat. Prod. Technol. 14, 445–455 (1999)Google Scholar
  7. 7.
    Dragoni, E., Mauri, P.: Intrinsic static strength of friction interfaces augmented with anaerobic adhesives. Int. J. Adhes. Adhes. 20, 315–321 (2000)CrossRefGoogle Scholar
  8. 8.
    Dragoni, E., Mauri, P.: Cumulative static strength of tightened joints bonded with anaerobic adhesives. Proc. Inst. Mech. Eng. Part L 216, 9–15 (2002)Google Scholar
  9. 9.
    Dragoni, E.: Fatigue testing of taper press fits bonded with anaerobic adhesives. J. Adhes. 79, 729–747 (2003)CrossRefGoogle Scholar
  10. 10.
    Halling, J.: Principles of Tribology. McMillan, London (1975)Google Scholar
  11. 11.
    Harrigan, T.P., Kareh, J.E., Harris, W.H. (1990) The influence of support conditions in the loading fixture on failure mechanisms in the push-out test: a finite element study. J. Orthop. Res. 8, 678–684 (1975)CrossRefGoogle Scholar
  12. 12.
    Haviland, G.S.: Machinery Adhesives for Locking Retaining and Sealing. Marcel Decker, New York (1986)Google Scholar
  13. 13.
    Hoeppner, D.W., Chandrasekaran, V., Elliot, C.B.: STP 136—Fretting fatigue: current technology and practices. ASTM (2000)Google Scholar
  14. 14.
    Kawamura, H., Sawa, T., Yoneno, M., Nakamura, T.: Effect of fitted position on stress distribution and strength of a bonded shrink fitted joint subjected to torsion. Int. J. Adhes. Adhes. 23, 131–140 (2003)CrossRefGoogle Scholar
  15. 15.
    Kollmann, F.G.: Welle-Nabe-Verbindungen. Gestaltung, Auslegung, Auswahl. Springer, Berlin (1984)Google Scholar
  16. 16.
    Liechti, K.M., Hayashi, T.: On the uniformity of stresses in some adhesive deformation specimens. J. Adhes. 29, 167–191 (1989)CrossRefGoogle Scholar
  17. 17.
    Mahon, F.: Use of anaerobic adhesives to enhance strength and capacity of flanged couplings. Paper 950125, SAE Intl Congress and Exposition, Detroit, 27th February–2 March (1995)Google Scholar
  18. 18.
    Mengel, R., Haeberle, J., Schlimmer, M.: Mechanical properties of hub/shaft joints adhesively bonded and cured under hydrostatic pressure. Int. J. Adhes. Adhes. 27, 568–573 (2007)CrossRefGoogle Scholar
  19. 19.
    O’Reilly, C.: Designing bonded cylindrical joints for automotive applications. Paper 900776, SAE Intl Congress and Exposition, Detroit, 26th February–2nd March (1990)Google Scholar
  20. 20.
    Raghava, R.S., Cadell, R.M.: The macroscopic yield behaviour of polymers. J. Mater. Sci 8, 225–232 (1973)CrossRefGoogle Scholar
  21. 21.
    Renton, W.J.: The symmetric lap shear test—what good is it? Exp. Mech. 16, 409–415 (1976)CrossRefGoogle Scholar
  22. 22.
    Rice, R.C.: Fatigue data analysis. In Metals Handbook: Mechanical Testing, vol. 8, pp. 703–704. American Society for Metals, Metals Park, Ohio (1985)Google Scholar
  23. 23.
    Romanos, G.: Strength evaluation of axisymmetric bonded joints using anaerobic adhesives. Int. J. Mat. Prod. Technol 14, 430–443 (1999)Google Scholar
  24. 24.
    Sawa, T., Sasaki, R., Yoneno, M.: An analysis of pipe flange connections using epoxy adhesives/anaerobic sealant instead of gaskets. ASME J. Press Vessel Technol. 117, 298–304 (1995)CrossRefGoogle Scholar
  25. 25.
    Sawa, T., Yoneno, M., Motegi, Y.: Stress analysis and strength evaluation of bonded shrink fitted joints subjected to torsional loads. J. Adhes. Sci. Technol. 15, 23–42 (2001)CrossRefGoogle Scholar
  26. 26.
    Schlimmer, M.: Anstrengungshypothese für Metallklebverbindungen. Materialwissenschaft und Werkstofftechnik 13, 215–221 (2004)CrossRefGoogle Scholar
  27. 27.
    Sekercioglu, T., Gulsoz, A., Rende, H.: The effects of bonding clearance and interference fit on the strength of adhesively bonded cylindrical components. Mater. Design 26, 377–381 (2005)CrossRefGoogle Scholar
  28. 28.
    Sekercioglu, T.: Strength based reliability of adhesively bonded tubular lap joints. Mater. Design 28, 1914–1918 (2007)CrossRefGoogle Scholar
  29. 29.
    Sekercioglu, T., Kovan, V.: Torque strength of bolted connections with locked anaerobic adhesive. Proc. Inst. Mech. Eng. Part L 222, 83–89 (2008)CrossRefGoogle Scholar
  30. 30.
    Werthm, S.: (1938) Kräfte an Längspreβsitzen. VDI-Z 82, 471–475Google Scholar
  31. 31.
    White, D.J., Humpherson, J.: Finite element analysis of stresses in shafts due to interference-fit hubs. J. Strain Anal. 4, 105–114 (1969)CrossRefGoogle Scholar
  32. 32.
    Yoneno, M., Sawa, T., Shimotakahara, K., Motegi, Y.: Axisymmetric stress analysis and strength of bonded shrink-fitted joints subjected to push-off forces. JSME Int. J. Ser. A 40, 362–374 (1997a)Google Scholar
  33. 33.
    Yoneno, M., Sawa, T., Shimotakahara, K., Motegi, Y.: Push-off tests and strength evaluation of joints combining shrink fitting with bonding. Proc. SPIE 2921, 193–198 (1997b). doi: 10.1117/12.269815
  34. 34.
    Yoneno, M., Sawa, T., Motegi, Y.: Axisymmetric stress analysis and strength of bonded shrink-fitted joints of solid shaft subjected to torsional loads. JSME Int. J. Ser. A 41, 517–524 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Sciences and Methods for EngineeringUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  2. 2.Henkel Italia S.p.A.MilanItaly

Personalised recommendations