Skip to main content

Carbon Nanotubes: The Minuscule Wizards

  • Chapter
  • First Online:
Carbon and Oxide Nanostructures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 5))

Abstract

Carbon Nanotubes (CNTs) have attracted the attention of scientific community due to their fundamental and technical importance. The structural diversities and the related diverse physical properties with large aspect ratio, small diameter and low density, are extremely fascinating. CNTs can behave as metallic conductors, semiconductors or insulators depending on their chirality, diameter and presence of defects. Their nano-scale dimension can be exploited as they have high accessible surface areas that make them not only exhibit high electronic conductivity but also useful mechanical properties. This chapter discusses on the production of CNTs, both single wall nanotubes and multiwall nanotubes giving emphasis on pulsed laser technique and microwave assisted chemical vapor deposition technique. The word wizard is coined due to their remarkable properties leading to their potential applications which are likely to stretch across different areas of industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernholc, J., Roland, C., Yakobson, B.I.: Modelling and simulation of solids. 706–715 (1997)

    Google Scholar 

  2. Srivastava SK, Vankar VD, Kumar V (2008) Nanoscale Res Lett 3:25–30

    Article  CAS  Google Scholar 

  3. Popov VN (2004) Mater Sci Eng R 43:61–102

    Article  CAS  Google Scholar 

  4. Xie S, Li W, Pan Z, Chang B, Sun L (2000) J Phys Chem Solids 61:1153–1158

    Article  CAS  Google Scholar 

  5. Qiao, Y.J., Cao, M., Zhang, L.: In: Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1331–1334 (2006)

    Google Scholar 

  6. Tian R, Wang X, Xu Y, Li S, Wan L, Li M, Cheng J (2009) J Nanopart Res 11:1201–1208

    Article  CAS  Google Scholar 

  7. Zhu, X., Gupta, M.G., Lu, G.Q.: In: Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 450–454 (2006)

    Google Scholar 

  8. Saito Y, Uemura S (2000) Carbon 38:169–182

    Article  CAS  Google Scholar 

  9. Ugarte D, Stokli T, Bornard JM, Chatelain A, de Heer WA (1998) Appl Phys A 67:101–105

    Article  CAS  Google Scholar 

  10. Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vázquez J, Beyers R (1993) Nature 363:605

    Article  CAS  Google Scholar 

  11. Thess A, Lee R, Nicolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fisher JE, Smalley RE (1996) Science 273:483

    Article  CAS  Google Scholar 

  12. Terrones M, Grobert N, Zhang JP, Terrones H, Olivares J, Hsu WK, Hare JP, Cheetham AK, Kroto HW, Walton DRM (1998) Chem Phys Lett 285:299

    Article  CAS  Google Scholar 

  13. Nath M, Satishkumar BC, Govindaraj A, Vinod CP, Rao CNR (2000) Chem Phys Lett 322:33

    Article  Google Scholar 

  14. Cheol, J.L., Jeunghee, P.: School of Electrical Engineering, Kunsan National University, Kunsan, pp. 573–701 (2000)

    Google Scholar 

  15. Byszewsri P, Klusek Z (2001) Optoelectron Rev 9:203–210

    Google Scholar 

  16. Ma X, Wang EG (2001) Appl Phys Lett 78:978

    Article  CAS  Google Scholar 

  17. Qin LC, Iijima S (1997) Chem Phys Lett 269:65–71

    Article  CAS  Google Scholar 

  18. Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) J Appl Phys A 72:573–580

    Article  CAS  Google Scholar 

  19. Maser MK, Munoz E, Benito AM, Martinez MT, De La Fuente GF, Maniette Y, Anglaret E, Sauvajol JL (1998) Chem Phys Lett 292:587–593

    Article  CAS  Google Scholar 

  20. Park YS, Kim KS, Jeong JH, Kim WS, Moon JM, An KH, Bae DJ, Lee YS, Park GS, Lee YH (2002) Synth Met 126:245–251

    Article  CAS  Google Scholar 

  21. Bartsch K, Leonhardt A (2004) Carbon 42:1731–1736

    Article  CAS  Google Scholar 

  22. Yahya N, Beh HG, Mansor H (2005) Am J Appl Sci 2(11):1509–1515

    Article  CAS  Google Scholar 

  23. Munoz E, Maser WK, Benito AM, Martinez MT, De La Fuente GF, Righi A, Sauvajol JL, Anglaret E, Maniette Y (2000) J Appl Phys A 70:145

    Article  CAS  Google Scholar 

  24. Klanwan, J., Seto, T., Furukawa, T., Otani, Y., Charinpanitkul, T., Kohno, M., Hirasawa, M.: J. Nanopart. Res. 123 (2010)

    Google Scholar 

  25. Talemi PJ, Cervini R, Simon GP (2001) J Nanopart Res 12:393–403

    Article  CAS  Google Scholar 

  26. Sabbaghzadeh J, Jafarkhani P, Dadras S, Torkamany MJ (2009) Appl Phys A 94:293–297

    Article  CAS  Google Scholar 

  27. Kusaba M, Tsunawaki Y (2006) Thin Solid Films 506–507:255–258

    Article  CAS  Google Scholar 

  28. Kappe CO (2008) Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  29. Wang, X., Hu, Z., Chen, X., Chen, Y.: Microwave plasma-enhanced. 44, 1567–1570 (2000)

    Google Scholar 

  30. Choi YC, Shin YM, Lee YH, Lee BS, Park GS, Choi WB, Lee NS, Kim JM (2000) Appl Phys Lett 76:2367

    Article  CAS  Google Scholar 

  31. Bower C, Zhou O, Zhu W, Werder DJ, Jin S (2000) Appl Phys Lett 77:2767

    Article  CAS  Google Scholar 

  32. Qin LC, Zhou D, Krauss AR, Gruen DM (1998) Appl Phys Lett 72:3437

    Article  CAS  Google Scholar 

  33. Yoon DM, Yoon BJ, Lee KH, Kim HS, Park CG (2006) Carbon 44:1298–1352

    Article  CAS  Google Scholar 

  34. Fu D, Zeng X, Zou J, Qian H, Li X, Xiong X (2009) Mater Chem Phys 118:501–505

    Article  CAS  Google Scholar 

  35. Mendez UO, Kharissova KV, Rodriguez M (2006) Rev Adv Mater Sci 5:398–402

    Google Scholar 

  36. Gong Q, Li Z, Li D, Bai X, Liang J (2004) Solid State Commun 131:399–404

    Article  CAS  Google Scholar 

  37. Chen M, Chen CM, Chen CF (2002) J Mater Sci 37:3561–3567

    Article  CAS  Google Scholar 

  38. Turq V, Ohmae N, Martin JM, Fontaine J, Kinoshita H, Loubet JL (2005) Tribol Lett 19(1):23–28

    Article  CAS  Google Scholar 

  39. Mann M, Zhang Y, Teo KBK, Wells T, El Gomati MM, Milne WI (2010) Microelectron Eng 87:1491–1493

    Article  CAS  Google Scholar 

  40. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287(5453):637–640

    Article  CAS  Google Scholar 

  41. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792

    Article  CAS  Google Scholar 

  42. Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84(20):4613–4616

    Article  CAS  Google Scholar 

  43. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Nano Lett 6(1):96–100

    Article  CAS  Google Scholar 

  44. Endo M, Hayashi T, Yoong AK, Terrones M, Dresselhaus MS (2004) Philos Trans R Soc Lond A 362:2223–2238

    Article  CAS  Google Scholar 

  45. Kohler AR, Som C, Helland A, Gottschalk F (2008) J Cleaner Prod 16:927–937

    Article  Google Scholar 

  46. Yahya N, Chen GZ, Andrew G (2009) J Adv Manuf Technol 3(1):109–122

    Google Scholar 

  47. Karpovichl, V., Rodionova, V., Rakov, A., Anoshkin, I., Philipenok, O.: In: MSMW’07 Symposium Proceedings, vol. 25, pp. 825–826 (2007)

    Google Scholar 

  48. Huang Y, Li N, Ma Y, Du F, Li F, He X, Lin X, Gao H, Chen Y (2007) Carbon 45:1614–1621

    Google Scholar 

  49. Maden JDW (2009) Science 323(5921):1571

    Article  Google Scholar 

  50. Tang, Z.K., Zhang, L., Wang, N., Zhang, X.X., Wen, G.H., Li, G.D., Wang, J.N., Chan, C.T., Sheng, P.: 292 (5526), 2462–2465 (2001)

    Google Scholar 

  51. Chen GZ, Shaffer MSP, Dixon DCG, Zhou W, Fray DJ, Windle AH (2002) Adv Mater 12(7):522–526

    Article  Google Scholar 

  52. Zidan, R.: In: Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405, pp. 1–3 (2002)

    Google Scholar 

  53. Chu H, Wei L, Cui R, Wang J, Li Y (2010) Coord Chem Rev 254:1117–1134

    Article  CAS  Google Scholar 

  54. Zhou Z, Gou J (2009) Sci Technol Adv Mater 10:015001

    Article  CAS  Google Scholar 

  55. de Heer WA, Bonard J-M, Stöckli T, Châtelain A, Forró L, Ugarte D (1997) Physica D 40:418–420

    Google Scholar 

  56. Collini, C., Guamieri, V., Marchion, R., Gottardi, G., Morganti, E., Lorenzelli, L.: In: 9th IEEE Conference on Nanotechnology, pp. 575–578 (2009)

    Google Scholar 

  57. Gruner G (2006) Anal Bioanal Chem 384:322–335

    Article  CAS  Google Scholar 

  58. Endo, M., Strano, S., Ajayan, P.M.: Springer Berlin, (111), 13-61 (2008)

    Google Scholar 

  59. Yu WDM, Zhang JH, Wang X, Li WM, Gao XD (2005) Appl Phys A 81:169–172

    Article  CAS  Google Scholar 

  60. Ajayan PM, Zhou OZ (2001) Carbon Nanotubes: Synthesis, Structure, Properties and Application (Topics in Applied Physics) 80:391–425

    Article  Google Scholar 

  61. Wang YY, Gupta S, Garguilo JM, Liu ZJ, Qin LC, Nemanicha RJ (2005) Diam Relat Mater 14:714–718

    Article  CAS  Google Scholar 

  62. Hayashi N, Honda S, Tsuji K, Ikuno T, Fujimoto K, Ohkura S, Katayama M, Oura K, Hirao T (2003) Appl Surf Sci 212–213:393–396

    Article  CAS  Google Scholar 

  63. Hyung SU, Lee SM, Jeona PG, Byung HK, Sang SP, Sang JK, Choc ES, Sung WK, Lee JD, Lee CG (2004) Thin Solid Films 462–463:19–23

    Google Scholar 

  64. Sohn JI, Lee S (2009) Appl Phys A 74:287–290

    Article  CAS  Google Scholar 

  65. Serp P, Corrias M, Kalek P (2003) Appl Catal A 253:337–358

    Article  CAS  Google Scholar 

  66. Chen HB, Lin JD, Cai Y, Wang XY, Yi J, Wang J, Wei G, Lin YZ, Liao DW (2001) Appl Surf Sci 180:328–335

    Article  CAS  Google Scholar 

  67. Yahya N, Puspitasari P, Koziol K, Zabidi NAM, Othman MF (2009) Int J Basic Appl Sci 10:95–100

    Google Scholar 

  68. Guczi L, Stefler G, Gesti O, Kopanny Z, Konya Z, Molnar E, Urban M, Kiricsi I (2006) J Catal 244:24–32

    Article  CAS  Google Scholar 

  69. Wang ZC, Zhou DD, Zhou GY, Li HL (2009) J Solid State Electrochem 13:371–376

    Article  CAS  Google Scholar 

  70. Kim S (2006) Sensor 6:503–513

    Article  CAS  Google Scholar 

  71. Yong Z, Junhua L, Xin L, Changchun Z (2006) Sens Actuators A 128:278–289

    Article  CAS  Google Scholar 

  72. Pekarek, P., Ficek, R., Vrba, R., Magat, M.: In: 15th International Symposium for Design and Technology of Electronics Packages, pp. 323–326 (2009)

    Google Scholar 

  73. Cai J, Du D (2008) J Appl Electrochem 38:1217–1222

    Article  CAS  Google Scholar 

  74. Grätzel M (2001) Nature 414:338

    Article  Google Scholar 

  75. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Nature 395:583

    Article  CAS  Google Scholar 

  76. Zhang Q, Dandeneua S, Zhou X (2009) Adv Mater 21:4087–4108

    Article  CAS  Google Scholar 

  77. Lee UL, Choi WS, Hong B (2010) Sol Energy Mat Sol Cells 95:680–685

    Article  CAS  Google Scholar 

  78. Subash, S., Chowdury, M.H.: In: IEEE X’plore, pp. 240–243 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noorhana Yahya .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yahya, N., Koziol, K. (2010). Carbon Nanotubes: The Minuscule Wizards. In: Carbon and Oxide Nanostructures. Advanced Structured Materials, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_27

Download citation

Publish with us

Policies and ethics