Skip to main content

Heat Transfer in Graphitic Foams

  • Chapter
  • First Online:
Heat Transfer in Multi-Phase Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 2))

Abstract

Porous graphitic foam possesses unique characteristics that make it an interesting material for consideration in heat transfer applications. The present chapter summarizes work that has been done over the past several years to characterize graphitic foams that are permeable to fluid flow for eventual use in applications requiring convective heat transfer enhancement. The work covers: engineering models describing the structure of the foam, models of effective thermal conductivity, experimental work that quantifies enhancements in various flow orientations, and computational work that has been undertaken to explore the hydraulic and thermal behaviour of graphitic foam at both the pore-level and the macroscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klett, W.J.: Process for making carbon foam. US Patent 6,033,506, 2000

    Google Scholar 

  2. Klett, W.J., Hardy, R., Romine, E., Walls, C., Burchell, T.: High-thermal conductivity, mesophase-pitch-derived carbon foam: effect of precursor on structure and properties. Carbon 38, 953–973 (2000)

    Article  CAS  Google Scholar 

  3. Gallego, C.N., Klett, W.J.: Carbon foams for thermal management. Carbon 41, 1461–1466 (2003)

    Article  CAS  Google Scholar 

  4. Yu, Q., Thompson, B.E., Straatman, A.G.: A unit-cube based model for heat transfer and pressure drop in porous carbon foam. ASME J. Heat Transfer 128, 352–360 (2006)

    Article  CAS  Google Scholar 

  5. Klett, J.W., McMillan, A.D., Gallego, N.C., Walls, C.: The role of structure on the thermal properties of graphitic foams. J. Mater. Sci. 39, 3659–3676 (2004)

    Article  CAS  Google Scholar 

  6. Antohe, B.V., Lage, J.L., Price, D.C., Weber, R.M.: Experimental determination of permeability and inertia coefficients of mechanically compressed aluminum porous matrices. ASME J. Fluids Eng. 119, 404–412 (1997)

    Article  CAS  Google Scholar 

  7. Paek, W.J., Kang, H.B., Kim, Y.S., Hyum, M.J.: Effective thermal conductivity and permeability of aluminum foam materials. Int. J. Thermophys. 21(2), 453–464 (2000)

    Article  CAS  Google Scholar 

  8. Boomsma, K., Poulikakos, D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams. ASME J. Fluids Eng. 124, 263–272 (2002)

    Article  CAS  Google Scholar 

  9. Calmidi, V.V., Mahajan, R.L.: Forced convection in high porosity metal foams. ASME J. Heat Transfer 122, 557–565 (2000)

    Article  CAS  Google Scholar 

  10. Boomsma, K., Poulikakos, D., Zwick, F.: Metal foams as compact high performance heat exchangers. Mech. Mater. 35, 1161–1176 (2003)

    Article  Google Scholar 

  11. Straatman, A.G., Gallego, N.C., Thompson, B.E., Hangan, H.: Thermal characterization of porous carbon foam – convection in parallel flow. Int. J. Heat Mass Transfer 49, 1991–1998 (2006)

    Article  CAS  Google Scholar 

  12. Sultan, K., DeGroot, C., Straatman, A.G., Gallego, N.C., Hangan, H.: Thermal characterization of porous graphitic foam – convection in impinging flow. Int. J. Heat Mass Transfer (2009). doi:10.1002/fld.2050

    Google Scholar 

  13. Straatman, A.G., Gallego, N.C., Yu, Q., Betchen, L.J., Thompson, B.E.: Forced convection heat transfer and hydraulic losses in porous carbon foam. ASME J. Heat Transfer 129(9), 1237–1245 (2007)

    Article  CAS  Google Scholar 

  14. Karimian, S.A.M., Straatman, A.G.: CFD Study of the hydraulic and thermal behaviour of spherical void phase porous materials. Int. J. Heat Fluid Flow 29(1), 292–305 (2007)

    Article  Google Scholar 

  15. Karimian, S.A.M., Straatman, A.G.: Numerical modeling of multi--directional flow and heat transfer in graphitic foams. ASME J. Heat Transfer 131(5). http://dx.doi.org/ 10.1115/1.3084122 (2009)

  16. Karimian, S.A.M., Straatman, A.G.: A thermal periodic boundary condition for heating and cooling processes. Int. J. Heat Fluid Flow 28, 329–339 (2007)

    Article  Google Scholar 

  17. El-Soukkary, T.M., Straatman, A.G.: The prediction of spatially periodic flows using a finite-volume model. Int. J. Numer. Methods Fluids 41, 303–317 (2003)

    Article  Google Scholar 

  18. Betchen, L.J., Straatman, A.G., Thompson, B.E.: A non-equilibrium finite-volume model for conjugate fluid/porous/solid domains. Numer. Heat Transfer Part A 49, 543–565 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony G. Straatman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Straatman, A.G. (2010). Heat Transfer in Graphitic Foams. In: Öchsner, A., Murch, G. (eds) Heat Transfer in Multi-Phase Materials. Advanced Structured Materials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_2

Download citation

Publish with us

Policies and ethics