Skip to main content

Heat Conduction in Two-Phase Composite Materials with Three-Dimensional Microstructures and Interfacial Thermal Resistance

  • Chapter
  • First Online:
Book cover Heat Transfer in Multi-Phase Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 2))

Abstract

The goals envisioned for the current chapter are threefold. First, it gives a general overview of heat conduction in two-phase composite materials with three dimensional microstructures and interfacial thermal resistance. Second, it describes the application of homogenization theory to the multiscale heat conduction problem in the composite medium in order to derive the boundary-value problem defined on a representative volume element of the composite microstructure (the cell problem) and an expression for the composite effective thermal conductivity. Third, it describes a finite-element-based computational scheme to calculate the effective thermal conductivity of composite materials with general 3-D microstructures and interfacial thermal resistance. Numerical results for the effective conductivity are presented and, when possible, compared with available analytical predictions. The numerical results reported here confirm that computational approaches are a helpful tool for understanding the complex macroscopic thermal behavior of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auriault, J.L., Ene, H.I.: Macroscopic modelling of heat transfer in composites with inter-facial thermal barrier. Int. J. Heat Mass Transf. 37, 2885–2892 (1994)

    Article  Google Scholar 

  2. Batchelor, G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A 355, 313–333 (1977)

    Article  Google Scholar 

  3. Bathe, K.J.: Finite Element Procedures in Engineering Analysis, 1st edn. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1982). Chaps. 1, 3, 7

    Google Scholar 

  4. Bensoussan, A., Lions, J.L., Papanicolaou, G.C.: Asymptotic Analysis for Periodic Structures, 1st edn. North-Holland Publishing Co., Amsterdam (1978). Chaps. 1–2

    Google Scholar 

  5. Benveniste, Y.: Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case. J. Appl. Phys. 61, 2840–2843 (1987)

    Article  CAS  Google Scholar 

  6. Cheng, H., Torquato, S.: Effective conductivity of periodic arrays of spheres with interfacial resistance. Proc. R. Soc. Lond. A 453, 145–161 (1997)

    Article  CAS  Google Scholar 

  7. Cruz, M.E.: Computational approaches for heat conduction in composite materials. In: Esteve, Y.V., Carlomagno, G.M., Brebbia, C.A. (eds.) Computational Methods and Experimental Measurements X, pp. 657–668. WIT Press, Southampton, UK (2001)

    Google Scholar 

  8. Dunn, M.L., Taya, M., Hatta, H., Takei, T., Nakajima, Y.: Thermal conductivity of hybrid short fiber composites. J. Compos. Mater. 27, 1493–1519 (1993)

    Article  CAS  Google Scholar 

  9. Duschlbauer, D., Böhm, H.J., Pettermann, H.E.: Numerical simulation of thermal conductivity of MMCs: effect of thermal interface resistance. Mater. Sci. Technol. 19, 1107–1114 (2003)

    Article  CAS  Google Scholar 

  10. Duschlbauer, D., Pettermann, H.E., Böhm, H.J.: Heat conduction of a spheroidal inhomo-geneity with imperfectly bonded interface. J. Appl. Phys. 94(3), 1539–1549 (2003)

    Article  CAS  Google Scholar 

  11. Every, A.G., Tzou, Y., Hasselman, D.P.H., Raj, R.: The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallica Mater. 40, 123–129 (1992)

    Article  CAS  Google Scholar 

  12. Furmañski, P.: Influence of different parameters on the effective thermal conductivity of short-fiber composites. J. Compos. Mater. 4, 349–362 (1991)

    Google Scholar 

  13. Furmañski, P.: Heat conduction in composites: homogenization and macroscopic behavior. Appl. Mech. Rev. 50, 327–356 (1997)

    Article  Google Scholar 

  14. Garnier, B., Dupuis, T., Gilles, J., Bardon, J.P., Danes, F.: Thermal contact resistance between matrix and particle in composite materials measured by a thermal microscopic method using a semi-intrinsic thermocouple. In: Proceedings of the 12th International Heat Transfer Conference, Grenoble, France, pp. 9–14 (2002)

    Google Scholar 

  15. Hasselman, D.P.H., Johnson, L.F.: Effective thermal conductivity of composites with inter-facial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987)

    Article  Google Scholar 

  16. Hasselman, D.P.H., Johnson, L.F., Syed, R., Taylor, M.P., Chyung, K.: Heat conduction characteristics of a carbon-fibre-reinforced lithia-alumino-silicate glass-ceramic. J. Mater. Sci. 22, 701–709 (1987)

    Article  CAS  Google Scholar 

  17. Hatta, H., Taya, M.: Equivalent inclusion method for steady state heat conduction in composites. Int. J. Eng. Sci. 24, 1159–1172 (1986)

    Article  CAS  Google Scholar 

  18. Jiajun, W., Su, Y.X.: Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AIN/PI composites. Compos. Sci. Technol. 64, 1623–1628 (2004)

    Article  Google Scholar 

  19. Kumar, S., Murthy, J.Y.: A numerical technique for computing effective thermal conductivity of fluid-particle mixtures. Numer. Heat Transf. B Fund. 47, 555–572 (2005)

    Article  Google Scholar 

  20. Matt, C.F., Cruz, M.E.: Calculation of the effective conductivity of ordered short-fiber composites. In: Proceedings of the 35th AIAA Thermophysics Conference, Anaheim, California, Paper AIAA 2001–2968 (2001)

    Google Scholar 

  21. Matt, C.F., Cruz, M.E.: Application of a multiscale finite-element approach to calculate the effective conductivity of particulate media. Comput. Appl. Math. 21(2), 429–460 (2002)

    Google Scholar 

  22. Matt, C.F., Cruz, M.E.: Enhancement of the thermal conductivity of composites reinforced with anisotropic short fibers. J. Enhanced Heat Transf. 13, 1–22 (2006)

    Article  Google Scholar 

  23. Matt, C.F., Cruz, M.E.: Numerical prediction of the effective thermal conductivity of composite materials. In: Proceedings of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, California, Paper AIAA 2006–54155 (2006)

    Google Scholar 

  24. Matt, C.F., Cruz, M.E.: Effective thermal conductivity of composite materials with 3-d microstructures and interfacial thermal resistance. Numer. Heat Transf. Appl. A 53, 577–604 (2008)

    Article  Google Scholar 

  25. McKenzie, D.R., McPhedran, R.C., Derrick, G.H.: The conductivity of lattices of spheres II. The body centred and face centred cubic lattices. Proc. R. Soc. Lond. A 362, 211–232 (1978)

    Article  CAS  Google Scholar 

  26. McPhedran, R.C., McKenzie, D.R.: The conductivity of lattices of spheres I. The simple cubic lattice. Proc. R. Soc. Lond. A 359, 45–63 (1978)

    Article  CAS  Google Scholar 

  27. Milton, G.W.: The Theory of Composites, 1st edn. Cambridge University Press, Cambridge (2002). Chaps. 2, 7

    Book  Google Scholar 

  28. Mirmira, S.R., Fletcher, L.S.: Comparative study of thermal conductivity of graphite fiber organic matrix composites. In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, California, Paper AJTE99-6439 (1999)

    Google Scholar 

  29. Nomura, S., Chou, T.W.: Bounds of effective thermal conductivity of short-fiber composites. J. Compos. Mater. 14, 120–129 (1980)

    Article  Google Scholar 

  30. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  Google Scholar 

  31. Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 2nd edn. CRC Press LLC, Boca Raton (2001). Chaps. 1–3

    Google Scholar 

  32. Rocha, R.P.A., Cruz, M.E.: Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. Numer. Heat Transf. A Appl. 39, 179–203 (2001)

    Article  Google Scholar 

  33. Rolfes, R., Hammerschmidt, U.: Transverse thermal conductivity of CFRP laminates: a numerical and experimental validation of approximation formulae. Compos. Sci. Technol. 54, 45–54 (1995)

    Article  CAS  Google Scholar 

  34. Sangani, A.S., Acrivos, A.: The effective conductivity of a periodic array of spheres. Proc. R. Soc. Lond. A 386, 263–275 (1983)

    Article  Google Scholar 

  35. Schöberl, J.: NETGEN – 4.4, User’s Manual. Numerical and Symbolic Scientific Computing, Institute of Mathematics, Johannes Kepler Universität Linz, Austria (2001)

    Google Scholar 

  36. Takei, T., Hatta, H., Taya, M.: Thermal expansion behavior of particulate filled composites II: multi-reinforcing phases (hybrid composites). Mater. Sci. Eng. A 131, 145–152 (1991)

    Article  Google Scholar 

  37. Torquato, S.: Random Heterogeneous Materials, Microstructure and Macroscopic Properties, 1st edn. Springer, New York (2002). Chaps. 1, 2, 5–7

    Google Scholar 

  38. Yoshida, K., Morigami, H.: Thermal properties of diamond/copper composite material. Microelectron. Reliab. 44, 303–308 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

M.E. Cruz would like to thank the Brazilian Council for Development of Science and Technology (CNPq) for Grants PQ-306592/2006-1 and APQ-471801/2004-6. The authors also thank Dr. Joachim Schöberl, from Johannes Kepler Universität Linz, Austria, for the free academic license of NETGEN 4.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Frederico Matt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matt, C.F., Cruz, M.E. (2010). Heat Conduction in Two-Phase Composite Materials with Three-Dimensional Microstructures and Interfacial Thermal Resistance. In: Öchsner, A., Murch, G. (eds) Heat Transfer in Multi-Phase Materials. Advanced Structured Materials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_10

Download citation

Publish with us

Policies and ethics