Skip to main content

Traumatic Brain Injury in the Military: Biomechanics and Finite Element Modelling

  • Chapter
  • First Online:
The Mechanobiology and Mechanophysiology of Military-Related Injuries

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 19))

Abstract

Traumatic brain injury is relatively common in military and law enforcement activities, despite ongoing improvements in head protection gear and in medical aid procedures and evacuation equipment in battlefield and conflict scenarios. In this chapter, we provide the relevant anatomical and physiological background which is relevant for understanding the occurrence and consequences of a traumatic brain injury and its subcategories. Next, we review the biomechanics of traumatic brain injury, and describe biomechanical injury criteria and thresholds. Finally, we introduce the concepts of modelling brain injuries by means of finite element techniques which consider the biomechanical properties of the head and neck tissues. The possible applications of such computational modelling and simulations, particularly for developing and testing military head-protection equipment, are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Abbreviated Injury Scale (AIS) is a standard system for classifying injuries according to type and severity following vehicle accidents. AIS score is time-independent and is given to each body area and each injury independently. AIS reflects the injury itself, and does not account for its consequences or complications. AIS scores refer to the following injury severities: 0 = non-injured, 1 = minor, 2 = moderate, 3 = serious, 4 = sever, 5 = critical, 6 = untreatable, [55].

References

  1. Maas, A.I.R., Stocchetti, N., Bullock, R.: Moderate and severe traumatic brain injury in adults. Lancet Neurol 7, 728–741 (2008)

    Article  Google Scholar 

  2. Brooks, A.J., Clasper, J., Midwinter, M.J., Hodgetts, T.J., Mahoney, P.F.: Ryan’s Ballistic Trauma—A Practical Guide, 3rd edn, Chaps. 5, 6, 10. Springer, Berlin (2011)

    Google Scholar 

  3. Owens, B.D., Kragh, J.F., Wenke, J.C., Macaitis, J., Wade, C.E., Holcomb, J.B.: Combat wounds in operation Iraqi Freedom and Operation Enduring Freedom. J. Trauma Inj. Infect. Crit. Care 64(2), 295–299 (2008)

    Article  Google Scholar 

  4. Okie, S.: Traumatic brain injury in the war zone. New Engl. J. Med. 352(20), 2043–2047 (2005)

    Article  Google Scholar 

  5. Wallace, D., Rayner, S.: Combat helmets and blast traumatic brain injury. J. Mil. Veterans’ Health 20(1), 10–17 (2012)

    Google Scholar 

  6. Lenhart, M.K., Savitsky, E., Eastridge, B.: Chapter 8—Traumatic brain injury. In: Combat Casualty Care—Lessons Learned from OEF and OIF, Office of the Surgeon General Department of the Army, United States of America (2012), pp. 347–362

    Google Scholar 

  7. Kobayashi, M., Mellen, P.F.: Rubber bullet injury—Case report with autopsy observation and literature review. Am. J. Forensic Med. Pathol. 30(3), 262–267 (2009)

    Article  Google Scholar 

  8. Meyer, K.S., Marion, D.W., Coronel, H., Jaffee, M.S.: Combat-related traumatic brain injury and its implications to military healthcare. Psychiatr. Clin. North Am. 33(4), 783–796 (2010)

    Article  Google Scholar 

  9. Warden, D.: Military TBI during the Iraq and Afghanistan wars. J. Head Trauma Rehab. 21(5), 398–402 (2006)

    Article  Google Scholar 

  10. Rodriguez, C., Weisbrod, A.B., Bell, R., Neal, C., Armonda, R., Dorlac, W., Schreiber, M., Dunne, J.R.: Long-term outcomes of combat casualties sustaining penetrating traumatic brain injury. J. Trauma Acute Care Surg. 73(6), 1525–1530 (2012)

    Article  Google Scholar 

  11. Langlois, J.A., Rutland-Brown, W., Thomas, K.E.: Traumatic brain injury in the United States; emergency department visits, hospitalizations, and deaths. National Center for Injury Prevention and Control (U.S.), Division of Injury and Disability Outcomes and Programs, Atlanta (2004)

    Google Scholar 

  12. Rothman, M.S., Arciniegas, D.B., Filley, C.M., Wierman, M.E.: The neuroendocrine effects of traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 19(4), 363–372 (2007)

    Article  Google Scholar 

  13. Humphreys, I., Wood, R.L., Phillips, C.J., Macey, S.: The costs of traumatic brain injury: a literature review. Clinico Econ. Outcomes Res. 5(26), 281–287 (2013)

    Article  Google Scholar 

  14. Jacobs, H.E.: The Los Angeles Head Injury Survey: procedures and initial findings. Arch. Phys. Med. Rehabil. 69(6), 425–431 (1988)

    Google Scholar 

  15. Fleminger, S., Oliver, D.L., Williams, W.H., Evans, J.: The neuropsychiatry of depression after brain injury. Neuropsychol. Rehab. Int. J. 13(1–2), 65–87 (2003)

    Article  Google Scholar 

  16. Wood, R.L., Yurdakul, L.K.: Change in relationship status following traumatic brain injury. Brain Inj. 11(7), 491–501 (1997)

    Article  Google Scholar 

  17. Saatman, K.E., Duhaime, A.C., Bullock, R., Maas, A.I., Valadka, A., Manley, G.T., Workshop Scientific Team and Advisory Panel Members: Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 25(7), 719–738 (2008)

    Article  Google Scholar 

  18. Department of Defence and Department of Veterans Affairs, Traumatic Brain Injury Task Force (2008). (Online) Available: http://www.cdc.gov/nchs/data/icd/Sep08TBI.pdf

  19. Graham, D.I., Hume Adams, J., Nicoll, J.A.R., Maxwell, W.L., Gennarelli, T.A.: The nature, distribution and causes of traumatic brain injury. Brain Pathol. 5, 397–406 (1995)

    Google Scholar 

  20. Smith, D.H., Meaney, D.F., Shull, W.H.: Diffuse axonal injury in head trauma. J. Head Trauma Rehab. 18(4), 307–316 (2003)

    Article  Google Scholar 

  21. Johnson, V.E., Stewart, W., Smith, D.H.: Axonal pathology in traumatic brain injury. Exp. Neurol. 246, 35–43 (2013)

    Article  Google Scholar 

  22. Greve, M.W., Zink, B.J.: Pathophysiology of traumatic brain injury. Mt Sinai J. Med. 76, 97–104 (2009)

    Article  Google Scholar 

  23. Park, E., Bell, J.D., Baker, A.J.: Traumatic brain injury: can the consequences be stopped? Can. Med. Assoc. J. (CMAJ) 178(9), 1163–1170 (2008)

    Article  Google Scholar 

  24. Wolf, J.A., Stys, P.K., Lusardi, T., Meaney, D., Smith, D.H.: Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci. 21(6), 1923–1930 (2001)

    Google Scholar 

  25. Werner, C., Engelhard, K.: Pathophysiology of traumatic brain injury. Br. J. Anaesth. 99(1), 4–9 (2007)

    Article  Google Scholar 

  26. Leestma, J.E.: Chapter 5—Forensic aspects of intracranial equilibria, Chap. 6—Physical injury to the nervous system. In: Forensic Neuropathology, 2nd edn. Taylor & Francis Group, LLC (2009) pp. 386–391, 425–550

    Google Scholar 

  27. Tandon, P.N., Ramamurthi, R.: Chapter 38—Traumatic intracerebral haematomas. In: Ramamurthi and Tandon’s Textbook of Neurosurgery, 3rd edn. Jaypee Brothers Medical Publishers (2012), pp. 446–447

    Google Scholar 

  28. McCord, J.M.: Iron, free radicals, and oxidative injury. J. Nutr. 134(11), 3171S–3172S (2004)

    Google Scholar 

  29. Meldrum, B.S.: Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S–1015S (2000)

    Google Scholar 

  30. Hlatky, R., Valadka, A.B., Robertson, C.S.: Intracranial hypertension and cerebral ischemia after severe traumatic brain injury. Neurosurg. Focus J. Neurosurg. 14(4) (2003)

    Google Scholar 

  31. Botteri, M., Bandera, E., Minelli, C., Latronico, N.: Cerebral blood flow thresholds for cerebral ischemia in traumatic brain injury. A systematic review. Crit. Care Med. 36(11), 3089–3092 (2008)

    Article  Google Scholar 

  32. Fitzpatrick, J.J., Wallace, M.: Encyclopedia of Nursing Research, 2nd edn. Springer, Berlin (2006), pp. 64–66

    Google Scholar 

  33. Raichle, M.E.: The pathophysiology of brain ischemia. Ann. Neurol. 13(1), 2–10 (1983)

    Article  Google Scholar 

  34. Coles, J.P.: Regional ischemia after head injury. Curr. Opin. Crit. Care 10, 120–125 (2004)

    Article  Google Scholar 

  35. Morganti-Kossmann, M.C., Rancan, M., Stahel, P.F., Kossmann, T.: Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr. Opin. Crit. Care 8(2), 101–105 (2002)

    Article  Google Scholar 

  36. Agur, A.M.R., Dalley, A.F.: Chapter 7—Head–Face and scalp. In: Grant’s Atlas of Anatomy, 13th edn. Lippincott Williams & Wilkins (2013), p. 642

    Google Scholar 

  37. Martini, F.H., Nath, J.L., Bartholomew, E.F.: Chapter 7—The Axis Skeleton, Chapter 13—The spinal cord, spinal nerves, and spinal reflexes, Chapter 14—The brain and cranial nerves. In: Fundamentals of Anatomy & Physiology, 9th edn. Pearson/Benjamin Cummings (2012), pp. 207–213, 226, 430–447, 462–463

    Google Scholar 

  38. Chen, Y., Ostoja-Starzewski, M.: MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech. 213(1–2), 155–167 (2010)

    Article  MATH  Google Scholar 

  39. Jaslow, C.R.: Mechanical properties of cranial sutures. J. Biomech. 23(4), 313–321 (1990)

    Article  Google Scholar 

  40. Van De Graaff K.M.: Chapter 11—Nervous tissue and the central nervous system, Chapter 12—Peripheral nervous system. In: Human Anatomy, 6th edn. The McGraw-Hill (2001), pp. 378–388, 413–426

    Google Scholar 

  41. Poca, M.A., Sahuquillo, J., Mataró, M., Benejam, B., Arikan, F., Báguena, M.: Ventricular enlargement after moderate or severe head injury: a frequent and neglected problem. J. Neurotrauma 22(11), 1303–1310 (2005)

    Article  Google Scholar 

  42. Kammersgaard, L.P., Linnemann, M., Tibæk, M.: Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation. NeuroRehabilitation 33(3), 473–480 (2013)

    Google Scholar 

  43. Zhang, L., Yang, K.H., King, A.I.: A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2), 226–236 (2004)

    Article  Google Scholar 

  44. Meaney, D.F., Smith, D.H.: Biomechanics of concussion. Clin. Sports Med. 30(1), 19-vii (2011)

    Google Scholar 

  45. Zhang, L., Yang, K.H., King, A.I.: Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18(1), 21–30 (2001)

    Article  Google Scholar 

  46. Hardy, W.N., Mason, M.J., Foster, C.D., Chirag, S.S., Kopacz, J.M., Yang, K.H., King, A.I.: A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51, 17–80 (2007)

    Google Scholar 

  47. Clark, J.M., Post, A., Hoshizaki, T.B., Gilchrist, M.D.: Determining the relationship between linear and rotational acceleration and MPS for different magnitudes of classified brain injury risk in ice hockey. In: International Research Council on the Biomechanics of Injury (IRCOBI), Lyon (France) (2015)

    Google Scholar 

  48. Ueno, K., Melvin, J.W.: Finite element model study of head impact based on hybrid III head acceleration: the effects of rotational and translational acceleration. J. Biomech. Eng. 117(3), 319–328 (1995)

    Article  Google Scholar 

  49. Post, A., Hoshizaki, T.B.: Rotational acceleration, brain tissue strain, and the relationship to concussion. J. Biomech. Eng. 137(3), 030801-1–030801-8 (2015)

    Google Scholar 

  50. Rowson, S., Brolinson, G., Goforth, M., Dietter, D., Duma, S.: Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131(6), 061016-1–061016-7 (2009)

    Google Scholar 

  51. Hardy, W.N.: A study of the response of the human cadaver head to impact. Ph.D. dissertation, Wayne State University, Detroit, Michigan (2007)

    Google Scholar 

  52. Brands, D.W.A.: Predicting brain mechanics during closed head impact: numerical and constitutive aspects. Ph.D. dissertation, Technische Universiteit Eindhoven, Eindhoven (2002)

    Google Scholar 

  53. Nusholtz, G.S., Lux, P., Kaiker, P.S., Janicki, M.A.: Head impact response—Skull deformation and angular accelerations. In: Proceedings of 28th Stapp Car Crash Conference. Society of Automotive Engineers, Warrendale, PA (1984)

    Google Scholar 

  54. Bilston, L.E.: Chapter 1—Introduction. In: Neural Tissue Biomechanics. Springer, Berlin (2013), p. 70

    Google Scholar 

  55. Schmitt, K., Niederer, P.F., Muser, M.H., Walz, F.: Trauma Biomechanics: Introduction to Accidental Injury. Springer, Berlin (2004)

    Book  Google Scholar 

  56. Hertz, E.: A note on the head injury criterion (HIC) as a predictor of the risk of skull fracture. In: Association for the Advancement of Automotive Medicine Annual Conference, San Antonio, Texas (1993)

    Google Scholar 

  57. Newman, J.A.: Head injury criteria in automotive crash testing. In: Proceedings of the 27th Stapp Car Crash Conference, SAE Paper 801317 (1980)

    Google Scholar 

  58. Willinger, R., Baumgartner, D.: Human head tolerance limits to specific injury mechanisms. Int. J. Crashworthiness 8(6), 605–617 (2003)

    Article  MATH  Google Scholar 

  59. Willinger, R., Baumgartner, D.: Numerical and physical modelling of the human head under impact: towards new injury criteria? Int. J. Veh. Des. 32(1–2), 94–115 (2003)

    Article  Google Scholar 

  60. Kleiven, S.: Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51, 81–114 (2007)

    Google Scholar 

  61. Monson, K.L., Goldsmith, W., Barbaro, N.M., Manley, G.T.: Axial mechanical properties of fresh human cerebral blood vessels. J. Biomech. Eng. 125(2), 288–294 (2003)

    Article  Google Scholar 

  62. Lee, M.C., Haut, R.C.: Insensitivity of tensile failure properties of human bridging veins to strain rate: implications in biomechanics of subdural hematoma. J. Biomech. 22(6–7), 537–542 (1989)

    Article  Google Scholar 

  63. Willinger, R., Kang, H.S., Diaw, B.: Three-dimensional human head finite-element model validation against two experimental impacts. Ann. Biomed. Eng. 27(3), 403–410 (1999)

    Article  Google Scholar 

  64. Kleiven, S., von Holst, H.: Consequences of head size following trauma to the human head. J. Biomech. 35(2), 153–160 (2002)

    Article  Google Scholar 

  65. Horgan, T.J., Gilchrist, M.D.: Influence of FE model variability in predicting brain motion and intracranial pressure changes in head impact simulations. Int. J. Crashworthiness 9(4), 401–418 (2004)

    Article  Google Scholar 

  66. Chen, Y.: Biomechanical analysis of traumatic brain injury by MRI-based finite element modeling. Ph.D. dissertation, University of Illinois, Urbana-Champaign (2011)

    Google Scholar 

  67. Horgan, T.J., Gilchrist, M.D.: The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8(4), 353–366 (2003)

    Article  Google Scholar 

  68. van Hoof, J., Worswick, M.J.: Combining head models with composite helmet models to simulate ballistic impacts, Report number 515882, Defence R&D Canada, Defence Research Establishment Valcartier (2000)

    Google Scholar 

  69. Tse, K.M., Tan, L.B., Lee, S.J., Lim, S.P., Lee, H.P.: Development and validation of two subject-specific finite element models of human head against three cadaveric experiments. Int. J. Numer. Meth. Biomed. Eng. 30(3), 397–415 (2014)

    Article  Google Scholar 

  70. Ji, S., Zhao, W., Ford, J.C., Beckwith, J.G., Bolander, R.P., Greenwald, R.M., Flashman, L.A., Paulsen, K.D., McAlliste, T.W.: Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J. Neurotrauma 32(7), 441–454 (2015)

    Article  Google Scholar 

  71. Shugar, T.A., Katona, M.G.: Development of Finite Element Head Injury Model. J. Eng. Mech. Div. 101(3), 223–239 (1975)

    Google Scholar 

  72. Ward, C., Thompson, R.: The development of a detailed finite element brain model. In: 19th Stapp Car Crash Conference, SAE Paper No. 751163, San Diego, California (1975)

    Google Scholar 

  73. Ruan, J.S.: Impact biomechanics of head injury by mathematical modeling. Ph.D. dissertation, Wayne State University, Detroit, MI (1994)

    Google Scholar 

  74. Turquier, F., Kang, H., Trosseille, X., Willinger, R., Lavaste, F., Tarriere, C., Domont, A.: Validation study of a 3D finite element head model against experimental data. In: Proceedings of the 40th Stapp Car Crash conference, SAE Technical Paper 962431, Albuquerque, New Mexico (1996)

    Google Scholar 

  75. Mendis, K.K., Stalnaker, R.L., Advani, S.H.: A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng. 117(4), 279–285 (1995)

    Article  Google Scholar 

  76. Gefen, A., Margulies, S.S.: Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37(9), 1339–1352 (2004)

    Article  Google Scholar 

  77. Yang, K.H., Hu, J., White, N.A., King, A.I., Chou, C.C., Prasad, P.: Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp car crash conference. Stapp Car Crash J. 50, 429–490 (2006)

    Google Scholar 

  78. Gefen, A., Gefen, N., Zhu, Q., Raghupathi, R., Margulies, S.: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20(11), 1163–1177 (2003)

    Article  Google Scholar 

  79. Levchakov, A., Linder-Ganz, E., Raghupathi, R., Margulies, S.S., Gefen, A.: Computational studies of strain exposures in neonate and mature rat brains during closed head impact. J. Neurotrauma 23(10), 1570–1580 (2006)

    Article  Google Scholar 

  80. Moore, D.F., Jérusalem, A., Nyein, M., Noels, L., Jaffee, M.S., Radovitzky, R.A.: Computational biology—Modeling of primary blast effects on the central nervous system. NeuroImage 47, T10–T20 (2009)

    Article  Google Scholar 

  81. Power, E.D.: A nonlinear finite element model of the human eye to investigate ocular injuries from night vision goggles. M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (2001)

    Google Scholar 

  82. Sopher, R., Nixon, J., Gorecki, C., Gefen, A.: Exposure to internal muscle tissue loads under the ischial tuberosities during sitting is elevated at abnormally high or low body mass indices. J. Biomech. 43(2), 280–286 (2010)

    Article  Google Scholar 

  83. Farvid, M.S., Ng, T.W.K., Chan, D.C., Barrett, P.H.R., Watts, G.F.: Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia. Diabetes Obes. Metab. 7(4), 406–413 (2005)

    Article  Google Scholar 

  84. Cortes, D.H., Jacobs, N.T., DeLucca, J.F., Elliott, D.M.: Elastic, permeability and swelling properties of human intervertebral disc tissues: a benchmark for tissue engineering. J. Biomech. 47(9), 2088–2094 (2014)

    Article  Google Scholar 

  85. Little, J.P.: Finite element modelling of anular lesions in the lumbar intervertebral disc, Ph.D. dissertation, Queensland University of Technology, Brisbane, Queensland (2004)

    Google Scholar 

  86. Bao, C., Meng, Q.: Study on mechanical characteristics of lumbar spine for snatch action in weight lifting based on finite element method. Int. J. Sports Sci. Eng. 4(1), 048–052 (2010)

    Google Scholar 

  87. Greaves, C.Y., Gadala, M.S., Oxland, T.R.: A three-dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms. Ann. Biomed. Eng. 36(3), 396–405 (2008)

    Article  Google Scholar 

  88. Soza, G., Grosso, R., Nimsky, C., Hastreiter, P., Fahlbusch, R., Greiner, G.: Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int. J. Med. Robot. Comput. Assist. Surg. 1(3), 87–95 (2005)

    Article  Google Scholar 

  89. Takhounts, E.G., Crandall, J., Kurosh, D.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47, 79–92 (2003)

    Google Scholar 

  90. Sigal, I.A., Flanagan, J.G., Ethier, C.R.: Factors influencing optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 46(11), 4189–4199 (2005)

    Article  Google Scholar 

  91. Nahum, A.M., Smith, R., Ward, C.C.: Intracranial pressure dynamics during head impact. In: 21st Stapp Car Crash Conference. Society of Automotive Engineers (SAE), SAE Paper No. 770922, pp. 339–366, San Diego, USA (1977)

    Google Scholar 

  92. Hardy, W.N., Foster, C.D., Mason, M.J., Yang, K.H., King, A.I., Tashman, S.: Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45, 337–368 (2001)

    Google Scholar 

  93. Kulkarni, S.G., Gao, X.L., Horner, S.E., Zheng, J.Q., David, N.V.: Ballistic helmets—Their design, materials, and performance against traumatic brain injury. Compos. Struct. 101, 313–331 (2013)

    Article  Google Scholar 

  94. Yang, J., Dai, J.: Simulation-based assessment of rear effect to ballistic helmet impact. Comput. Aided Des. Appl. 7(1), 59–73 (2010)

    Google Scholar 

  95. Aare, M., Kleiven, S.: Evaluation of head response to ballistic helmet impacts using the finite element method. Int. J. Impact Eng. 34, 596–608 (2007)

    Article  Google Scholar 

  96. Chang, F.K., Chang, K.Y.: A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 21(9), 834–855 (1987)

    Article  Google Scholar 

  97. Abrate, S.: Matrix cracking in laminated composites: a review. Compos. Eng. 1(6), 337–353 (1991)

    Article  Google Scholar 

  98. Harris, B.: Engineering composite materials. The Institute of Metals, London (1999)

    Google Scholar 

  99. Chang, F.K., Chen, M.H.: The in situ ply shear strength distributions in graphite/epoxy laminated composites. J. Compos. Mater. 21, 708–733 (1987)

    Article  Google Scholar 

  100. David, N.V., Gao, X.L., Zheng, J.Q.: Ballistic resistant body armor: contemporary and prospective materials and related protection mechanisms. Appl. Mech. Rev. 62(5), 050802-1–050802-20 (2009)

    Google Scholar 

  101. Haque, B.Z.G., Gillespie, J.W.: A new penetration equation for ballistic limit analysis. J. Thermoplast. Compos. Mater. 28(7), 950–972 (2013)

    Article  Google Scholar 

  102. Zhang, L., Makwana, R., Sharma, S.: Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet. Front. Neurol. 4(88) (2013)

    Google Scholar 

  103. Tse, K.M., Tan, L.B., Yang, B., Tan, V.B.C., Lim, S.P., Lee, H.P.: Ballistic impacts of a Full-Metal Jacketed (FMJ) bullet on a validated Finite Element (FE) model of helmet-cushion-head. In: The 5th International Conference on Computational Methods (ICCM), Cambridge, England (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gefen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friedman, R., Epstein, Y., Gefen, A. (2016). Traumatic Brain Injury in the Military: Biomechanics and Finite Element Modelling. In: Gefen, A., Epstein, Y. (eds) The Mechanobiology and Mechanophysiology of Military-Related Injuries. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 19. Springer, Cham. https://doi.org/10.1007/8415_2016_189

Download citation

  • DOI: https://doi.org/10.1007/8415_2016_189

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33010-5

  • Online ISBN: 978-3-319-33012-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics