Skip to main content

Modelling Human Heat Transfer and Temperature Regulation

  • Chapter
  • First Online:
Book cover The Mechanobiology and Mechanophysiology of Military-Related Injuries

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 19))

Abstract

In recent years there has been a growing demand from research, military and the industry for robust, reliable models predicting human thermophysiological responses. This chapter discusses the various aspects of- and approaches to- modelling human heat transfer and thermoregulation including the passive and the active system, numerical tissue heat transfer, environmental heat exchange, and clothing. Attention is also paid to advanced modelling topics such as model personalisation to predict responses of individuals, and methods for coupling with other simulation models and measurement systems. Several application examples of coupled systems are illustrated including numerical and physical simulation systems and a system for non-invasive assessment of internal temperature using signals from wearable sensors. The predictive performance of the model is discussed based on validation examples covering different exposure scenarios, personal characteristics, physical activities and in conjunction with non-invasive determination of rectal temperature with measured skin temperatures as model input. It is concluded that the model is a robust predictor of human thermophysiological responses, and, the proposed numerical simulation approach to non-invasive assessment of body core temperature, a reliable method applicable to a broad range of exposure conditions, personal characteristics, exercise intensities and types of clothing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azer, N.Z., Hsu, S.: The prediction of thermal sensation from a simple model of human physiological regulatory response. ASHRAE Trans. 83(1): 88–102 (1977)

    Google Scholar 

  2. Barlow, R.J.: Different definitions of the standard deviation. Statistics. Sandiford, D.J., Mandl, F., Phillips A.C. (eds.) A Guide to the Use of Statistical Methods in the Physical Sciences, pp. 10–12. Wiley, Chichester (1989)

    Google Scholar 

  3. Ben Shabat, Y., Shitzer, A., Fiala, D.: Modified wind chill temperatures determined by a whole body thermoregulation model and human-based facial convective coefficients. Intl. J. Biometorol. 58, 1007–1015 (2014). doi:10.1007/s00484-013-0698-z

    Article  Google Scholar 

  4. Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Tinz, B., Havenith, G.: Deriving the operational procedure for the universal thermal climate index (UTCI). Int. J. Biometeorol. 56, 491–494 (2012)

    Google Scholar 

  5. Bröde, P., Błazejczyk, K., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B.: The universal thermal climate index UTCI compared to ergonomics standards for assessing the thermal environment. Ind. Health 51(1), 16–24 (2013)

    Article  Google Scholar 

  6. Candas, V., Libert, J.P., Vogt, J.J.: Sweating and sweat decline of resting men in hot humid environments. Eur. J. Appl. Physiol. 50, 223–234 (1983)

    Article  Google Scholar 

  7. Cropper, P.C., Yang, T., Cook, M.J., Fiala, D., Yousaf, R.: Coupling a model of human thermoregulation with computational fluid dynamics for predicting human-environment interaction. J. Build. Perform. Simul. 1, 1–11 (2010)

    Google Scholar 

  8. Daanen, H., Heerlen, M.C.: Manual of the ARB5 Program, pp. 1–17. Arbouw Foundation, Amsterdam (1990)

    Google Scholar 

  9. Daanen, H., Robinette, K.M.: CAESAR: the Dutch data set. TNO-report TM-01-C026, TNO human factors, Kampweg 5, P.O. Box 23, 3769 ZG Soesterberg, The Netherlands (2001)

    Google Scholar 

  10. Davey, S., Richmond, V., Griggs, K., Havenith, G.: Decision algorithm for the heat stressed worker: empirical analysis. Prospie EU project, delivery 3.2 report, pp. 1–98 (2011)

    Google Scholar 

  11. Droog, R.P.J., Kingma, B.R.M., van Marken Lichtenbelt, W.D., Kooman, J.P., Van der Sande, F.M., van Steenhoven, A.A., Frijns, A.J.H.: Mathematical modelling of thermal and circulatory effects during hemodialysis. Artif. Organs. 36(9), 797–811 (2012). doi:10.1111/j.1525-1594.2012.01464.x

  12. DuBois, D., DuBois, E.F.: A formula to estimate the approximate surface area if height and weight be known. Arch. Int. Med. 17, 863–871 (1916)

    Article  Google Scholar 

  13. Ellis, K.: Human body composition: in vivo methods. Physiol. Rev. 80(2), 649–680 (2000)

    Google Scholar 

  14. EN ISO 9920: Ergonomics of the Thermal Environment—Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble. European Committee for Standardization, Brussels (2009)

    Google Scholar 

  15. Fiala, D.: FPC Model User Manual. Version 2.5, pp. 1–98. Stuttgart, Germany (2014)

    Google Scholar 

  16. Fanger, P.O.: Thermal Comfort—Analysis and Applications in Environmental Engineering. McGraw-Hill, New York, London, Sidney, Toronto (1973)

    Google Scholar 

  17. Fiala, D., Lomas, K.J., Stohrer, M.: A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J. Appl. Physiol. 87, 1957–1972 (1999)

    Google Scholar 

  18. Fiala, D., Lomas, K.J., Stohrer, M.: Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int. J Biometeorol. 45, 143–159 (2001)

    Article  Google Scholar 

  19. Fiala, D., Lomas, K.J., Stohrer, M.: First principles modelling of thermal sensation responses in steady state and transient boundary conditions. ASHRAE Trans. 109(1), 179–186 (2003)

    Google Scholar 

  20. Fiala, D., Bunzl, A., Lomas, K.J., Cropper, P.C., Schlenz D.: A new simulation system for predicting human thermal and perceptual responses in vehicles. In: D. Schlenz (ed). PKW-Klimatisierung III: Klimakonzepte, Regelungsstrategien und Entwicklungsmethoden, pp. 147–162. Expert Verlag Renningen, Haus der Technik Fachbuch Band 27 (2004)

    Google Scholar 

  21. Fiala, D., Psikuta, A., Jendritzky, G., Paulke, S., Nelson, D.A., van Marken Lichtenbelt, W.D., Frijns, A.J.H.: Physiological modeling for technical, clinical and research applications. Front. Biosci. S 2, 939–968 (2010)

    Google Scholar 

  22. Fiala, D., Havenith, G., Daanen, H.: Dynamic thermophysiological model of a worker. EU Prospie project FP7-NMP-2008-SME-2, Proj No. 229042, technical report delivery 3.1, pp. 1–58 (2010)

    Google Scholar 

  23. Fiala, D., Davey, S., Psikuta, A.: Decision algorithms for the heat stressed worker: numerical analysis. Prospie EU project, delivery 3.2 report, pp. 1–50 (2011)

    Google Scholar 

  24. Fiala, D., Havenith, G., Bröde, P., Jendritzky, G.: UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J Biometeorol. 56(3), 429–441 (2012)

    Article  Google Scholar 

  25. Gagge, A.P.: A two-node model of human temperature regulation in fortran. In: Parker, Jr. J.F., West, V.R. (eds.) Bioastronautics Data Book, pp. 247–262. Washington DC, NASA SP-3006 (1971)

    Google Scholar 

  26. Gagge, A.P., Fobelets, A.P., Berglund, P.E.: A standard predictive index of human response to the thermal environment. ASHRAE Trans. 92, 709–731 (1986)

    Google Scholar 

  27. Goldman, R.F., Kampmann, B.: Research study group on bio-medical research aspects of military protective clothing. In: Handbook of Clothing—Biomedical Effects of Military Clothing and Equipment Systems, 2nd edn. (2007) http://www.environmental-ergonomics.org/Handbook%20on%20Clothing%20-%202nd%20Ed.pdf

  28. Gordon, R.G., Roemer, R.B., Horvath, S.M.: A mathematical model of the human temperature regulatory system—transient cold exposure response. IEEE Trans. Biomed. Eng. 23, 434–444 (1976)

    Article  Google Scholar 

  29. Gordon, C.C., Churchill, T., Clauser, C.E., Bradtmiller, B., McConville, J.T., Tebbetts, I., Walker, R.A.: 1988 anthropometric survey of US army personnel: Methods and summary statistics. Technical report Nattick/TR-89/044, Yellow Springs, Ohio (1989)

    Google Scholar 

  30. Han, T.S., Lean, M.E.J.: Anthropometric indices of obesity and regional distribution of fat depots. In: Bjorntorp, P. (ed.) International Textbook of Obesity, pp 51-65. Wiley, New York (2001)

    Google Scholar 

  31. Hardy, J.D., Dubois, E.F.: The technique of measuring radiation and convection. J. Nutr. 15, 461–475 (1938)

    Google Scholar 

  32. Hardy, J.D., Stolwijk, J.A.J.: Partitional calorimetric studies of man during exposures to thermal transients. J Appl. Physiol. 21, 1799–1806 (1966)

    Google Scholar 

  33. Havenith, G.: Individual heat stress response. Ph.D. thesis, Catholic University Nijmegen, Netherlands (1997)

    Google Scholar 

  34. Havenith, G.: Individualized model of human thermoregulation for the simulation of heat stress response. J. Appl. Physiol. 90, 1943–1954 (2001)

    Google Scholar 

  35. Havenith, G., Fiala, D., Blazejczyk, K., Richards, M., Bröde, P., Holmér, I., Rintamäki, H., Benshabat, Y., Jendritzky, G.: The UTCI-clothing model. Int. J Biometeorol. 56(3), 461–470 (2012)

    Article  Google Scholar 

  36. Höppe, P.: Die Energiebilanz des Menschen. Wiss. Mitt. Meteorol. Inst. Uni München 49, 1–173 (1984)

    Google Scholar 

  37. Huizenga, C., Zhang, H., Arens, E.: A model of human physiology and comfort for assessing complex thermal environments. Build. Environ. 36(6), 691–699 (2001)

    Article  Google Scholar 

  38. Jack, A.: Einfluss hoch funktioneller Sporttextilien auf die Thermoregulation von Ausdauerathleten bei unterschiedlichen Umgebungstemperaturen. Ph.D. thesis, University of Bayreuth, Cultural Studies, Bayreuth, Germany (2010)

    Google Scholar 

  39. Jones, B.W., Ogawa, Y.: Transient interaction between the human and the thermal environment. ASHRAE Trans. 98, 189–196 (1992)

    Google Scholar 

  40. Kreith, F.: Principles of Heat Transfer, 3rd edn, pp. 457–473. Harper and Row, New York (1976)

    Google Scholar 

  41. Kubaha, K., Fiala, D., Lomas, K.J.: Predicting human geometry-related factors for detailed radiation analysis in indoor spaces. In: Proceedings of IBPSA 8th International Building Simulation Conference, vol. 2, pp. 681–688 (2003)

    Google Scholar 

  42. Kubaha, K., Fiala, D., Toftum, J., Taki, A.H.: Human projected area factors for detailed direct and diffuse solar radiation analysis. Int. J Biometeorol. 49, 113–129 (2004)

    Article  Google Scholar 

  43. Kubaha, K.: Asymmetric radiation and human thermal comfort. Ph.D. thesis, De Montfort University (2005)

    Google Scholar 

  44. Kuk, J.L., Lee, S.J., Heymsfield, S.B., Ross, R.: Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am. J. Clin. Nutr. 81, 1330–1334 (2005)

    Google Scholar 

  45. Lorenz, M., Fiala, D., Spinnler, M., Sattelmayer, T.: A coupled numerical model to predict heat transfer and passenger thermal comfort in vehicle cabins. SAE technical paper 2014-01-0664 (2014). doi:10.4271/2014-01-0664

  46. McCullough, E.A., Jones, B.W., Huck, J.: A comprehensive data base for estimating clothing insulation. ASHRAE Trans. 92, 29–47 (1985)

    Google Scholar 

  47. McCullough, E.A., Jones, B.W., Tamura, T.: A data base for determining the evaporative resistance of clothing. ASHRAE Trans. 95, 316–328 (1989)

    Google Scholar 

  48. Nadel, E.R., Bullard, R.W., Stolwijk, J.A.J.: Importance of skin temperature in the regulation of sweating. J. Appl. Physiol. 31, 80–87 (1971)

    Google Scholar 

  49. Nadel, E.R., Stolwijk, J.A.J.: Effect of skin temperature on sweat gland response. J. Appl. Physiol. 35(5), 689–694 (1974)

    Google Scholar 

  50. NASA: Anthropometric Source Book, vol. I: A Handbook of Anthropometric Data. Athropol Res Proj Staff, NASA Reference Publication 1024, N79-11734, Webb Associates (eds.). Yellow Springs, Ohio (1978)

    Google Scholar 

  51. NASA: Anthropometric Source Book, vol. II: Anthropometry for Designers. Athropol Res Proj Staff, NASA Reference Publication 1024, Webb Associates (eds.). Yellow Springs, Ohio (1978)

    Google Scholar 

  52. NHANES III survey data: National Health and Nutrition Examination Survey. Survey data charts (1999). http://halls.md/chart/height-weight.htm

  53. Paquette, S., Gordon, C., Bradtmiller, B.: Anthropometric Survey (ANSUR) II Pilot Study: Methods and Summary Statistics. Technical report NATICK/TR-09/014, pp 1–88. Yellow Springs, Ohio (2009)

    Google Scholar 

  54. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Google Scholar 

  55. Psikuta, A., Richards, M., Fiala, D.: Single-sector thermophysiological human simulator. Physiol. Measur. 29(2), 181–192 (2008)

    Article  Google Scholar 

  56. Psikuta, A.: Development of an ‘artificial human’ for clothing research. Ph.D. thesis, De Montfort University (2009)

    Google Scholar 

  57. Psikuta, A., Fiala, D., Laschewski, G., Jendritzky, G., Richards, M., Blazejczyk, K., Mekjavic, I., Rintamäki, H., de Dear, R., Havenith, G.: Validation of the Fiala multi-node thermophysiological model for UTCI application. Int. J. Biometeorol. 56(3), 443–460 (2012)

    Article  Google Scholar 

  58. Richards, M., Fiala, D.: Modelling fire-fighter responses to exercise and asymmetric IR-radiation using a dynamic multi-mode model of human physiology and results from the sweating agile thermal manikin (SAM). Eur. J. Appl. Physiol. 92(6), 649–653 (2004)

    Article  Google Scholar 

  59. Robinette, K.M., Blackwell, S., Daanen, H., Boehmer, M., Fleming, S., Brill, T., Hoeferlin, D., Burnsides, D.: Civilian American and European Surface Anthropometry Resource (CAESAR). United States Air Force Research Laboratory, final report, AFRL-HE-WP-TR-2002-0169 (2002)

    Google Scholar 

  60. Rogers, R.R., Yau, M.K.: A short course in cloud physics, 3rd edn. Pergamon Press, p. 16, ISBN 0-7506-3215-1 (1989)

    Google Scholar 

  61. Rowell, L.B., Wyss, C.R.: Temperature regulation in exercising and heat-stressed man. In: Shitzer, A., Eberhart, R.C. (eds.) Heat Transfer in Medicine and Biology—Analysis and Applications, pp. 53–78. Plenum Press, New York, London (1985)

    Google Scholar 

  62. Severens, N.M.W., van Marken Lichtenbelt, W.D., Frijns, A.J.H., van Steenhoven, A.A., de Mol, B.A.J.M., Sessler, D.I.: A model to predict patient temperature during cardiac surgery. Phys. Med. Biol. 52, 5131–5145 (2007)

    Google Scholar 

  63. Stolwijk, J.A.J., Hardy, J.D.: Partitional calorimetric studies of responses of man to thermal transients. J. Appl. Physiol. 21, 967–977 (1966)

    Google Scholar 

  64. Stolwijk, J.A.J.: A Mathematical Model of Physiological Temperature Regulation in Man. NASA contractor report, NASA CR-1855, Washington DC (1971)

    Google Scholar 

  65. Tanabe, S., Kobayashi, K., Nakano, J., Ozeki, Y., Konishi, M.: Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build. 34(6), 637–646 (2002)

    Article  Google Scholar 

  66. USARIEM: Human thermoregulatory model for whole body immersion in water at 20 and 28 °C. AD-A185-052, Report No. T23-87, US Army Research Institute of Environmental Medicine (1987)

    Google Scholar 

  67. WHO: Interim report FAO/WHO/UNU Expert Consultation, Report on Human Energy Requirements. WHO, Geneva (2004)

    Google Scholar 

  68. Wissler, E.H.: Mathematical simulation of human thermal behavior using whole body models. In: Shitzer, A., Eberhart, R.C. (eds.) Heat Transfer in Medicine and Biology—Analysis and Applications, pp. 325–373. Plenum New York London (1985)

    Google Scholar 

  69. Yousaf, R., Fiala, D., Wagner, A.: Numerical simulation of human radiation heat transfer using a mathematical model of human physiology and computational fluid dynamics (CFD). In: Nagel, W., Kröner, D., Resch M. (eds.) High Performance Computing in Science and Engineering ’07, pp. 647–666. Springer, Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Fiala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiala, D., Havenith, G. (2015). Modelling Human Heat Transfer and Temperature Regulation. In: Gefen, A., Epstein, Y. (eds) The Mechanobiology and Mechanophysiology of Military-Related Injuries. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 19. Springer, Cham. https://doi.org/10.1007/8415_2015_183

Download citation

  • DOI: https://doi.org/10.1007/8415_2015_183

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33010-5

  • Online ISBN: 978-3-319-33012-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics