Skip to main content

Excessive Weight Bearing Compromises Foot Structure and Function Across the Lifespan

  • Chapter
  • First Online:
The Mechanobiology of Obesity and Related Diseases

Abstract

The base of support for the musculoskeletal system during most physical activities is the feet. Feet are highly unique and flexible structures, which are required to perform extremely diverse functions, particularly during weight-bearing tasks. Although feet that are structurally sound can usually perform tasks of daily living with ease, deviations from normal foot structure or alignment can compromise foot function and, in turn, cause discomfort or pain. Extensive research has confirmed that obesity negatively affects foot structure and function. Obese individuals have been found to have broader, thicker and flatter feet; generate significantly higher dynamic plantar pressures; and alter their foot mechanics during walking relative to their non-overweight counterparts. The need for overweight and obese individuals to bear excess body mass has also been associated with the development of musculoskeletal pain and discomfort in the feet, which can be severe enough to limit these individuals from participating in activities of daily living, work and recreation. As this can perpetuate the cycle of obesity, the compromised foot structure of obese individuals is deemed a major health issue. In this chapter, we review the effects of bearing excessive body mass on foot structure and function across a lifespan and, where possible, highlight the impact of this excessive weight bearing on the ability of individuals to perform activities of daily living. Based on the studies reviewed we recommend that evidence-based interventions be designed to reduce excess fat mass in overweight and obese individuals, focussing on non-weight bearing activities to relieve loading of their foot structures and, in turn, improve the quality of life of these individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Norkin, C.C., Levangie, P.K.: Joint Structure and Function: A Comprehensive Analysis, 2nd edn. FA Davis Company, Philadelphia (1992)

    Google Scholar 

  2. Bertsch, C., et al.: Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children. Gait Posture 19(3), 235–242 (2004)

    Google Scholar 

  3. Aurell, Y., et al.: Ultrasound anatomy in the normal neonatal and infant foot: an anatomic introduction to ultrasound assessment of foot deformities. Eur. Radiol. 12(9), 2306–2312 (2002)

    Google Scholar 

  4. Sutherland, D.H., et al.: The development of mature gait. J. Bone Joint Surg. 62(3), 336–353 (1980)

    Google Scholar 

  5. Hefti, F., Brunner, R.: Flexible arch of the foot. Othopade 28, 159–172 (1999)

    Google Scholar 

  6. Tax, H.: Podopediatrics, 4th edn. Williams & Wilkins, Baltimore (1985)

    Google Scholar 

  7. Wenger, D.R., et al.: Corrective shoes and inserts as treatment for flexible flatfoot in infants and children. J. Bone Joint Surg. Am. 71(6), 800–810 (1989)

    Google Scholar 

  8. Cailliet, R.: Foot and Ankle Pain, 12th edn. FA Davis Company, Philadelphia (1980)

    Google Scholar 

  9. Donatelli, R.: The Biomechanics of the Foot and Ankle. FA Davis Company, Philadelphia (1990)

    Google Scholar 

  10. Staheli, L.T., Chew, D.E., Corbett, M.: The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults. J. Bone Joint Surg. Am. 69(3), 426–428 (1987)

    Google Scholar 

  11. Chadha, H., Pomeroy, G., Manoli, A.: Radiologic signs of unilateral pes planus. Foot Ankle Int. 18(9), 603–604 (1997)

    Google Scholar 

  12. Flat Feet and Fallen Arches. http://www.1foot2foot.com/foot-problems-and-care/flat-feet-and-fallen-arches.html (2014). Accessed 14 Jan 2014

  13. Bordelon, R.L.: Hypermobile flatfoot in children—comprehension, evaluation, and treatment. Clin. Orthop. Relat. Res. 181, 7–14 (1983)

    Google Scholar 

  14. Omey, M.L., Micheli, L.J.: Foot and ankle problems in the young athlete. Med. Sci. Sports Exerc. 31(7), S470–S486 (1999)

    Google Scholar 

  15. Platzer, W.: Locomotor Systems, 4th edn. Georg Theime Verlag, Stuttgart (1992)

    Google Scholar 

  16. Shereff, M.J., et al.: A comparison of nonweight-bearing and weight-bearing radiographs of the foot. Foot Ankle 10(6), 306–311 (1990)

    Google Scholar 

  17. Nigg, B.M.: Experimental techniques used in running shoe research. In: Nigg, B.M. (ed.) Biomechanics of Running Shoes, pp. 27–61. Human Kinetics Publishers, Champaign (1986)

    Google Scholar 

  18. Hicks, J.H.: The mechanics of the foot: II. The plantar aponeurosis and the arch. J. Anat. 88, 25–30 (1954)

    Google Scholar 

  19. Saltzman, C.L., Nawoczenski, D.A.: Complexities of foot architecture as a base of support. J. Orthop. Sports Phys. Ther. 21(6), 354–360 (1995)

    Google Scholar 

  20. Ker, R.F., et al.: The spring in the arch of the human foot. Nature 325(7000), 147–149 (1987)

    Google Scholar 

  21. Hicks, J.H.: The mechanics of the foot: I. The joints. J. Anat. 87, 345–357 (1953)

    Google Scholar 

  22. Arangio, G.A., Chen, C.R., Salathe, E.P.: Effect of varying arch height with and without the plantar fascia on the mechanical properties of the foot. Foot Ankle Int. 19(10), 705–709 (1998)

    Google Scholar 

  23. Sharkey, N.A., Donahue, S.W., Ferris, L.: Biomechanical consequences of plantar fascial release or rupture during gait—part II: alterations in forefoot loading. Foot Ankle Int. 20(2), 86–96 (1999)

    Google Scholar 

  24. Stainsby, G.D.: Pathological anatomy and dynamic effect of the displaced plantar plate and the importance of the integrity of the plantar plate-deep transverse metatarsal ligament tie-bar. Ann. R. Coll. Surg. Engl. 79(1), 58–68 (1997)

    Google Scholar 

  25. Nilsson, J., Thorstensson, A.: Ground reaction forces at different speeds of human walking and running. Acta Physiol. Scand. 136(2), 217–227 (1989)

    Google Scholar 

  26. Mann, R.A., Biomechanics. In: Jahss, M.H. (ed.) Disorders of the Foot, pp. 37–67. W.B. Saunders, Philadelphia (1982)

    Google Scholar 

  27. Hockenbury, R.T.: Forefoot problems in athletes. Med. Sci. Sports Exerc. 31(7), S448–S458 (1999)

    Google Scholar 

  28. Barry, D.C., Sabacinski, K.A., Habershaw, G.M., Giurini, J.M., Chrzan, J.S.: Tendo Achillis procedures for chronic ulcerations in diabetic patients with transmetatarsal amputations. J. Am. Podiatr. Med. Assoc. 83(2), 96–100 (1993)

    Google Scholar 

  29. Cavanagh, P.R.: Plantar soft tissue thickness during ground contact in walking. J. Biomech. 32(6), 623–628 (1999)

    Google Scholar 

  30. Gooding, G., et al.: Heel pad thickness: determination by high-resolution ultrasonography. J. Ultrasound Med. 4(4), 173–174 (1985)

    Google Scholar 

  31. Kimani, J.K.: The structural and functional-organization of the connective-tissue in the human foot with reference to the histomorphology of the elastic fiber system. Acta Morphol. Neerl. Scand. 22(4), 313–323 (1984)

    Google Scholar 

  32. Jahss, M.H., et al.: Investigations into the fat pads of the sole of the foot: anatomy and histology. Foot Ankle 13(5), 233–242 (1992)

    Google Scholar 

  33. Cavanagh, P.R., et al.: The relationship of static foot structure to dynamic foot function. J. Biomech. 30(3), 243–250 (1997)

    Google Scholar 

  34. Myerson, M.S. and M.J. Shereff. The pathological anatomy of claw and hammer toes. Journal of Bone and Joint Surgery, 1989. 71-A(1): 45-49

    Google Scholar 

  35. Mann, R., Inman, V.T.: Phasic activity of intrinsic muscles of the foot. J. Bone Joint Surg. Am. 46, 469–481 (1964)

    Google Scholar 

  36. Basmajian, J.V., Stecko, G. The role of muscles in arch support of the foot. J. Bone Joint Surg. Am. 45, 1184–1190 (1963)

    Google Scholar 

  37. Kelly, L.A., et al.: Recruitment of the plantar intrinsic foot muscles with increasing postural demand. Clin. Biomech. 27(1), 46–51 (2012)

    Google Scholar 

  38. Cavanagh, P.R., Kram, R.: Stride length in distance running: velocity, body dimensions, and added mass effects. Med. Sci. Sports Exerc. 21(4), 467–479 (1989)

    Google Scholar 

  39. Martin, P.E.: Mechanical and physiological responses to lower extremity loading during running. Med. Sci. Sports Exerc. 17(4), 427–433 (1985)

    Google Scholar 

  40. Volpon, J.B.: Footprint analysis during the growth period. J. Pediatr. Orthop. 14, 83–85 (1994)

    Google Scholar 

  41. Hennig, E., Rosenbaum, D.: Pressure distribution patterns under the feet of children in comparison with adults. Foot Ankle 11(5), 306–311 (1991)

    Google Scholar 

  42. Hennig, E., Staats, A., Rosenbaum, D.: Plantar pressure distribution patterns of young school children in comparison to adults. Foot Ankle Int. 15(1), 35–40 (1994)

    Google Scholar 

  43. Pfeiffer, M., et al.: Prevalence of flat foot in preschool-aged children. Pediatrics 118(2), 634–639 (2006)

    MathSciNet  Google Scholar 

  44. Lobstein, T., et al.: Obesity in children and young people: a crisis in public health. Obes. Rev. 5 Suppl 1(S1), 4–104 (2004)

    Google Scholar 

  45. Strong, W.B., et al.: Evidence based physical activity for school-age youth. J. Pediatr. 146(6), 732–737 (2005)

    Google Scholar 

  46. Tucker, P.: The physical activity levels of preschool-aged children: a systematic review. Early Child. Res. Q. 23(4), 547–558 (2008)

    Google Scholar 

  47. Reilly, J.J., et al.: Total energy expenditure and physical activity in young Scottish children: mixed longitudinal study. Lancet 363(9404), 211–212 (2004)

    Google Scholar 

  48. Okely, A.D., et al.: Adherence to physical activity and electronic media guidelines in Australian pre-school children. J. Paediatr. Child Health 45(1–2), 5–8 (2009)

    Google Scholar 

  49. Chen, K.C., et al.: Change in flatfoot of preschool-aged children: a 1-year follow-up study. Eur. J. Pediatr. 172(2), 255–260 (2013)

    Google Scholar 

  50. Chen, K.C., et al.: Relevant factors influencing flatfoot in preschool-aged children. Eur. J. Pediatr. 170(7), 931–936 (2011)

    Google Scholar 

  51. Mauch, M., et al.: Foot morphology of normal, underweight and overweight children. Int. J. Obes. 32(7), 1068–1075 (2008)

    Google Scholar 

  52. Mickle, K.J., Steele, J.R., Munro, B.J.: The feet of overweight and obese young children: are they flat or fat? Obesity 14(11), 1949–1953 (2006)

    Google Scholar 

  53. Mickle, K.J., Steele, J.R., Munro, B.J.: Does excess mass affect plantar pressure in young children? Int. J. Pediatr. Obes. 1(3), 183–188 (2006)

    Google Scholar 

  54. Mickle, K.J., et al.: Relationship between plantar pressures, physical activity and sedentariness among preschool children. J. Sci. Med. Sport 14(1), 36–41 (2011)

    Google Scholar 

  55. Riddiford-Harland, D., Steele, J., Storlien, L.: Does obesity influence foot structure in prepubescent children? Int. J. Obes. Relat. Metab. Disord. 24(5), 541–544 (2000)

    Google Scholar 

  56. Napolitano, C., et al.: Risk factors that may adversely modify the natural history of the pediatric pronated foot. Clin. Podiatr. Med. Surg. 17(3), 397–417 (2000)

    Google Scholar 

  57. Chen, J.P., Chung, M.J., Wang, M.J.: Flatfoot prevalence and foot dimensions of 5-to 13-year-old children in Taiwan. Foot Ankle Int. 30(4), 326–332 (2009)

    Google Scholar 

  58. Wearing, S., et al.: The arch index: a measure of flat or fat feet? Foot Ankle Int. 25(8), 575–581 (2004)

    Google Scholar 

  59. Valmassy, R.: Clinical Biomechanics of the Lower Extremity, 1st edn. Mosby-Year Book Inc., St. Louis (1996)

    Google Scholar 

  60. Riddiford-Harland, D.L., Steele, J.R., Baur, L.A.: The use of ultrasound imaging to measure midfoot plantar fat pad thickness in children. J. Orthop. Sports Phys. Ther. 37(10), 644–647 (2007)

    Google Scholar 

  61. Riddiford-Harland, D.L., Steele, J.R., Baur, L.A.: Are the feet of obese children fat or flat revisiting the debate. Int. J. Obes. 35(1), 115–120 (2011)

    Google Scholar 

  62. Dowling, A.M., Steele, J.R., Baur, L.A.: Does obesity influence foot structure and plantar pressure patterns in prepubescent children? Int. J. Obes. Relat. Metab. Disord. 25(6), 845–852 (2001)

    Google Scholar 

  63. Bordin, D., et al.: Flat and cavus foot, indexes of obesity and overweight in a population of primary-school children. Minerva Pediatr. 53(1), 7–13 (2001)

    Google Scholar 

  64. Gilmour, J., Burns, Y.: The measurement of the medial longitudinal arch in children. Foot Ankle Int. 22(6), 493–498 (2001)

    Google Scholar 

  65. Chang, J.H., et al.: Prevalence of flexible flatfoot in Taiwanese school-aged children in relation to obesity, gender, and age. Eur. J. Pediatr. 169(4), 447–452 (2010)

    Google Scholar 

  66. Dowling, A.: Relationship between static and dynamic foot structure and function in obese children, in department of biomedical science. University of Wollongong, Wollongong (2001)

    Google Scholar 

  67. Riddiford-Harland, D.L., Steele, J.R., Baur, L.A.: Foot structure in obese children: implications for footwear design. In: Annual Scientific Meeting of the Australian and New Zealand Obesity Society, Adelaide, Australia (2011)

    Google Scholar 

  68. Riddiford-Harland, D.L., Steele, J.R., Baur, L.A.: Medial midfoot fat pad thickness and plantar pressures: are these related in children? Int. J. Pediatr. Obes. 6(3–4), 261–266 (2011)

    Google Scholar 

  69. Niederer, I., et al.: BMI group-related differences in physical fitness and physical activity in preschool-age children: a cross-sectional analysis. Res. Q. Exerc. Sport 83(1), 12–19 (2012)

    Google Scholar 

  70. Roberts, D., et al.: Weight status and gross motor skill in kindergarten children. Pediatr. Phys. Ther. 24(4), 353–360 (2012)

    Google Scholar 

  71. Kessler, J., et al.: Childhood obesity is associated with increased risk of most lower extremity fractures. Clin. Orthop. Relat. Res. 471(4), 1199–1207 (2013)

    Google Scholar 

  72. Hills, A.P., Parker, A.W.: Locomotor characteristics of obese children. Child Care Health Dev. 18(1), 29–34 (1992)

    Google Scholar 

  73. McGraw, B., et al.: Gait and postural stability in obese and nonobese prepubertal boys. Arch. Phys. Med. Rehabil. 81(4), 484–489 (2000)

    Google Scholar 

  74. Pau, M., Kim, S., Nussbaum, M.A.: Does load carriage differentially alter postural sway in overweight vs. normal-weight schoolchildren? Gait Posture 35(3), 378–382 (2012)

    Google Scholar 

  75. Nantel, J., Brochu, M., Prince, F.: Locomotor strategies in obese and non-obese children. Obesity 14(10), 1789–1794 (2006)

    Google Scholar 

  76. Dufek, J.S., et al.: Effects of overweight and obesity on walking characteristics in adolescents. Hum. Mov. Sci. 31(4), 897–906 (2012)

    Google Scholar 

  77. Duckworth, T., et al.: The measurement of pressures under the foot. Foot Ankle 3(3), 130–141 (1982)

    Google Scholar 

  78. David, A.C., et al.: Temporal parameters and plantar pressure distribution in normal-weight and obese children. In: Book of Abstracts of the International Society of Biomechanics XVth Congress, p. 503. Calgary (1999)

    Google Scholar 

  79. Yan, S.H., et al.: Effects of obesity on dynamic plantar pressure distribution in Chinese prepubescent children during walking. Gait Posture 37(1), 37–42 (2013)

    Google Scholar 

  80. Dowling, A., Steele, J., Baur, L.: What are the effects of obesity in children on plantar pressure distributions? Int. J. Obes. Relat. Metab. Disord. 28(11), 1514–1519 (2004)

    Google Scholar 

  81. Chan, G., Chen, C.T.: Musculoskeletal effects of obesity. Curr. Opin. Pediatr. 21(1), 65–70 (2009)

    Google Scholar 

  82. Stovitz, S.D., et al.: Musculoskeletal pain in obese children and adolescents. Acta Paediatr. 97(4), 489–493 (2008)

    Google Scholar 

  83. Stenholm, S., et al.: Obesity history as a predictor of walking limitation at old age. Obesity 15(4), 929–938 (2007)

    Google Scholar 

  84. Shultz, S.P., Anner, J., Hills, A.P.: Paediatric obesity, physical activity and the musculoskeletal system. Obes. Rev. 10(5), 576–582 (2009)

    Google Scholar 

  85. Hills, A.P., et al.: Plantar pressure differences between obese and non-obese adults: a biomechanical analysis. Int. J. Obes. Relat. Metab. Disord. 25(11), 1674–1679 (2001)

    Google Scholar 

  86. Fabris, S.M., et al.: Computerized baropodometry in obese patients. Obes. Surg. 16(12), 1574–1578 (2006)

    MathSciNet  Google Scholar 

  87. Riddiford-Harland, D.L., Steele, J.R, Cliff, D.P, Okely, A.D, Morgan P.J, Jones R.A, Baur, L.A.: Lower activity levels are related to higher plantar pressures in overweight children. Med. Sci. Sports Exerc. (2013) (MSSE-D-13-00566)

    Google Scholar 

  88. Jones, R.A., et al.: The hikcups trial: a multi-site randomized controlled trial of a combined physical activity skill-development and dietary modification program in overweight and obese children. BMC Public Health 7 (2007)

    Google Scholar 

  89. Wearing, S.C., et al.: The impact of childhood obesity on musculoskeletal form. Obes. Rev. 7(2), 209–218 (2006)

    Google Scholar 

  90. Wearing, S.C., et al.: Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes. Rev. 7(3), 239–250 (2006)

    Google Scholar 

  91. Weil Jr, L.: Obesity, feet, and the impact on health care. Foot Ankle spec. 5(3), 148–149 (2012)

    MathSciNet  Google Scholar 

  92. Frey, C., Zamora, J.: The effects of obesity on orthopaedic foot and ankle pathology. Foot Ankle Int. 28(9), 996–999 (2007)

    Google Scholar 

  93. Gravante, G., et al.: Comparison of ground reaction forces between obese and control young adults during quiet standing on a baropodometric platform. Clin. Biomech. 18, 780–782 (2003)

    Google Scholar 

  94. Wearing, S.C., et al.: Footprint-based estimates of arch structure are confounded by body composition in adults. J. Orthop. Res. 30(8), 1351–1354 (2012)

    Google Scholar 

  95. McKenzie, D.: The role of the shoe and orthotics. In: Shepard, R.J., Taunton, J.E. (eds.) Foot and Ankle in Sport and Exercise, pp. 30–38. Kargel, Basel (1987)

    Google Scholar 

  96. Messier, S.P., et al.: Severe obesity—effects on foot mechanics during walking. Foot Ankle 15(1), 29–34 (1994)

    Google Scholar 

  97. Kaufman, K.R., et al.: The Effect of Foot Structure and Range of Motion on Musculoskeletal Overuse Injuries. Am. J. Sports Med. 27(5), 585–593 (1999)

    Google Scholar 

  98. Stott, J.R.R., Hutton, W.C., Stokes, I.A.F.: Forces under the foot. J. Bone Joint Surg. Br. 55-B(2), 335–344 (1973)

    Google Scholar 

  99. Bauer, G.R., et al.: Clinical applications of three-dimensional magnetic resonance image analysis. J. Am. Podiatr. Med. Assoc. 86(1), 33–37 (1996)

    Google Scholar 

  100. Giladi, M., et al.: Unusual distribution and onset of stress fractures in soldiers. Clin. Orthop. Relat. Res. 192, 142–146 (1985)

    Google Scholar 

  101. Simkin, A., et al.: Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle 10(1), 25–29 (1989)

    Google Scholar 

  102. Harris, R.I., Beath, T. Hypermobile flat-foot with short tendo achillis. J. Bone Joint Surg. Am. 30A(1), 116–140 (1948)

    Google Scholar 

  103. Nass, D., Hennig, E., van Treek, R.: The thickness of the heel pad loaded by bodyweight in obese and normal weight adults. In: Proceedings of the 4th Symposium on Footwear Biomechanics, pp. 74–75 (1999)

    Google Scholar 

  104. Peltonen, M., Lindroos, A.K., Torgerson, J.S.: Musculoskeletal pain in the obese: a comparison with a general population and long-term changes after conventional and surgical obesity treatment. Pain 104(3), 549–557 (2003)

    Google Scholar 

  105. Tanamas, S.K., et al.: Relationship between obesity and foot pain and its association with fat mass, fat distribution, and muscle mass. Arthritis Care Res. 64(2), 262–268 (2012)

    Google Scholar 

  106. Vela, S.A., Lavery, L.A., Armstrong, D.G., Anaim, A.A.: The effect of increased weight on peak pressures: Implications for obesity and diabetic foot pathology. J. Foot Ankle Surg. 37(5), 416–420 (1998)

    Google Scholar 

  107. Irving, D., et al.: Obesity and pronated foot type may increase the risk of chronic plantar heel pain: a matched case-control study. BMC Musculoskelet. Disord. 8(1), 41 (2007)

    Google Scholar 

  108. Wearing, S.C., et al.: The biomechanics of restricted movement in adult obesity. Obes. Rev. 7(1), 13–24 (2006)

    Google Scholar 

  109. Runhaar, J., et al.: A systematic review on changed biomechanics of lower extremities in obese individuals: a possible role in development of osteoarthritis. Obes. Rev. 12(12), 1071–1082 (2011)

    Google Scholar 

  110. Teh, E., Teng, L., Acharya, U.R., Ha, T., Goh, E., Min, L.: Static and frequency domain analysis of plantar pressure distribution in obese and non-obese subjects. J. Bodywork Mov. Ther. 10(2), 127–133 (2006)

    Google Scholar 

  111. Maury, E., Brichard, S.M.: Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 314(1), 1–16 (2010)

    Google Scholar 

  112. Manolopoulos, K.N., Karpe, F., Frayn, K.N.: Gluteofemoral body fat as a determinant of metabolic health. Int. J. Obes. 34(6), 949–959 (2010)

    Google Scholar 

  113. Wang, H., Schiltenwof, M., Buchner, M.: The role of TNF-α in patients with chronic low back pain—a prospective comparative longitudinal study. Clin. J. Pain 24(3), 273–278 (2008)

    Google Scholar 

  114. Prichasuk, S. The heel pad in plantar heel pain. J. Bone Joint Surg. Br. 1994. 76-B(1), 140–142

    Google Scholar 

  115. Ozdemir, H., et al.: Effects of changes in heel fat pad thickness and elasticity on heel pain. J. Am. Podiatr. Med. Assoc. 94(1), 47–52 (2004)

    Google Scholar 

  116. Smahel, Z.: Effects of body-weight on the configuration of the plantar arch (planimetric study). Hum. Biol. 52(3), 447–457 (1980)

    Google Scholar 

  117. Cavanagh, P.R., Rodgers, M.M., Iiboshi, A.: Pressure distribution under symptom-free feet during barefoot standing. Foot Ankle 7(5), 262–276 (1987)

    Google Scholar 

  118. Birtane, M., Tuna, H.: The evaluation of plantar pressure distribution in obese and non-obese adults. Clin. Biomech. 19(10), 1055–1059 (2004)

    Google Scholar 

  119. Sergi, G., et al.: Lower extremity motor performance and body mass index in elderly people: the Italian longitudinal study on aging. J. Am. Geriatr. Soc. 55(12), 2023–2029 (2007)

    Google Scholar 

  120. Flegal, K., et al.: Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307(5), 491–497 (2012)

    Google Scholar 

  121. DeCaria, J.E., Sharp, C., Petrella, R.J.: Scoping review report: obesity in older adults. Int. J. Obes. 36(9), 1141–1150 (2012)

    Google Scholar 

  122. Inelmen, E.M., et al.: Can obesity be a risk factor in elderly people? Obes. Rev. 4(3), 147–155 (2003)

    Google Scholar 

  123. Bohannon, R.W.: Body mass index and mobility of older home care patients. Physiother. Theory Pract. 27(6), 460–462 (2011)

    Google Scholar 

  124. Chantelau, E., Gede, A.: Foot dimensions of elderly people with and without diabetes mellitus—a data basis for shoe design. Gerontology 48(4), 241–244 (2002)

    Google Scholar 

  125. Mickle, K.J., et al.: Foot shape of older people: implications for shoe design. Footwear Sci. 2(3), 131–139 (2010)

    Google Scholar 

  126. Aurichio, T.R., Rebelatto, J.R., de Castro, A.P.: The relationship between the body mass index (BMI) and foot posture in elderly people. Arch. Gerontol. Geriatr. 52(2), e89–92 (2011)

    Google Scholar 

  127. Owens, S., Thordarson, D.B.: The adductor hallucis revisited. Foot Ankle Int. 22(3), 186–191 (2001)

    Google Scholar 

  128. McCarthy, L.H., et al.: Chronic pain and obesity in elderly people: results from the Einstein aging study. J. Am. Geriatr. Soc. 57(1), 115–119 (2009)

    Google Scholar 

  129. Gross, K.D., et al.: Association of flat feet with knee pain and cartilage damage in older adults. Arthritis Care Res. 63(7), 937–944 (2011)

    Google Scholar 

  130. Monteiro, M., et al.: Influence of obesity and sarcopenic obesity on plantar pressure of postmenopausal women. Clin. Biomech. 25(5), 461–467 (2010)

    Google Scholar 

  131. Mickle, K.J., et al.: Foot pain, plantar pressures, and falls in older people: a prospective study. J. Am. Geriatr. Soc. 58, 1936–1940 (2010)

    Google Scholar 

  132. Kent-Braun, J.A., Ng, A.V., Young, K.: Skeletal muscle contractile and noncontractile components in young and older women and men. J. Appl. Physiol. 88(2), 662–668 (2000)

    Google Scholar 

  133. Hooper, M.M., et al.: Musculoskeletal findings in obese subjects before and after weight loss following bariatric surgery. Int. J. Obes. 31(1), 114–120 (2007)

    MathSciNet  Google Scholar 

  134. McGoey, B.V., et al.: Effect of weight loss on musculoskeletal pain in the morbidly obese. J. Bone Joint Surg. Br. 72-B(2), 322–323 (1990)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Sheridan Gho for the artwork in Figs. 2 and 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie R. Steele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steele, J.R., Riddiford-Harland, D.L., Mickle, K.J. (2014). Excessive Weight Bearing Compromises Foot Structure and Function Across the Lifespan. In: Gefen, A., Benayahu, D. (eds) The Mechanobiology of Obesity and Related Diseases. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 16. Springer, Cham. https://doi.org/10.1007/8415_2014_175

Download citation

  • DOI: https://doi.org/10.1007/8415_2014_175

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09335-2

  • Online ISBN: 978-3-319-09336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics