Skip to main content

In Vivo Mechanical Loading Conditions of Pectorally Implanted Cardiac Pacemakers

  • Chapter
  • First Online:
Cardiovascular and Cardiac Therapeutic Devices

Abstract

With technological progress enabling new patient populations and smaller devices, detailed data on mechanical in vivo loads become increasingly important to ensure reliability of implantable medical devices. Employing a system for remote measurement of in vivo mechanical loadings on fully implantable pacemaker, pre-clinical investigations on in-line force and transverse reaction force of the Pectoralis major were conducted in the Chacma baboon. Based on an intra-species correlation derived from these investigations, a simplified physiological model and a mechanical equivalent model were developed for a sub-muscular pectoral device implant considering the Pectoralis major, Pectoralis minor and rib cage. By assessing the morphometric and mechanical parameters of these musculoskeletal structures and associated model parameters, the intra-species correlation was shown to exhibit robustness for a larger intra-species subject population and a linear scale variance allowing the application to humans under consideration of the inter-species difference of the attachment angles of the Pectoralis major. The transfer function provides a basis for the prediction of patient-specific maximum mechanical loadings on a sub-muscular pectoral cardiac pacemaker implant through non- or minimal invasive measurements on the patient. This study demonstrated the feasibility of the approach for assessment of in vivo mechanical loading conditions of implantable pacemakers.

An erratum to this chapter is available at 10.1007/8415_2013_167.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/8415_2013_167

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ai :

Coefficients of inter-species transfer function for i = 1 to 5

FIL :

In-line force generated in the sternal Pectoralis major

FT :

Transverse force acting on the IPM/pectoral implant

kr :

Transverse stiffness coefficient of the rib cage

kt1 :

Transverse stiffness coefficient of the Pectoralis major

kt2 :

Transverse stiffness coefficient of the Pectoralis minor

Lf :

Muscle fibre length

Lf,opt :

Optimal muscle fibre length

Lm :

Length of the sternal Pectoralis major along the estimated line of action

Lr :

Characteristic length of the rib cage determined by the rib geometry and curvature

Mb :

Body mass of subject

Mm :

Mass of the entire Pectoralis major

N:

Number of subjects

QIL :

Uniformly distributed in-line force along the width of the Pectoralis major over the pectoral implant

tm :

Thickness of the sternal Pectoralis major at the location of the IPM/pectoral implant

tm,cb :

Thickness of the sternal Pectoralis major at crossbar of the buckle force transducer

tmu :

Thickness of the Pectoralis minor at the location of the IPM implant

Vm :

Volume of the entire Pectoralis major

wm :

Width of the Pectoralis major over the IPM/pectoral implant

wm,cb :

Width of the Pectoralis major at the cross bar of the buckle transducer

ψ1 :

Angle of attachment of the Pectoralis major at its origin

\( \bar{\psi }_{ 1} \) :

Mean angle of attachment of the Pectoralis major at its origin for n subjects

ψ2 :

Angle of attachment of the Pectoralis major at its insertion

\( \bar{\psi }_{ 2} \) :

Mean angle of attachment of the Pectoralis major at its insertion for n subjects

θ:

Pennation angle of the skeletal muscle fibres

ρm :

Material density of Pectoralis major

σm :

Axial stress in the Pectoralis major during contraction

σmu :

Axial stress in the Pectoralis minor during contraction

B:

Baboon

H:

Human

References

  1. Antretter, H., Colvin, J., Schweigmann, U., Hangler, H., Hofer, D., Dunst, K., Margreiter, J., Laufer, G.: Special problems of pacing in children. Indian Pacing Electrophysiol. J. 3, 23–33 (2003)

    Google Scholar 

  2. Baxter, W.W., McCulloch, A.D.: In vivo finite element model-based image analysis of pacemaker lead mechanics. Med. Image Anal. 5, 255–270 (2001)

    Article  Google Scholar 

  3. Biewener, A.: Scaling of terrestrial support: differing solutions to mechanical constraints of size. In: Brown, J.H., West, G.B. (eds.) Scaling in Biology, pp. 51–65. Oxford University Press, New York (2000)

    Google Scholar 

  4. Binder-Macleod, S.A., Lee, S.C.K., Russ, D.W., Kucharski, L.J.: Effects of activation pattern on human skeletal muscle fatigue. Muscle Nerve 21, 1145–1152 (1998)

    Article  Google Scholar 

  5. Brinker, J., Midei, M.G.: Techniques of pacemaker implantation and removal. In: Ellenbogen, K.A., Wood, M.A., Kenneth, A. (eds.) Cardiac Pacing and ICDs, 4th edn, pp. 196–264. Blackwell Publications, Malden (2005)

    Chapter  Google Scholar 

  6. Chang, Y.-W., Hughes, R.E., Su, F., Itoi, E., An, K.-N.: Prediction of muscle force involved in shoulder internal rotation. J. Shoulder Elbow Surg. 9, 188–195 (2000)

    Article  Google Scholar 

  7. Cleland, J.G.F., Daubert, J.-C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., Tavazzi, L.: The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005)

    Article  Google Scholar 

  8. de Vaal, M.H., Neville, J., Litow, M., Scherman, J., Zilla, P., Franz, T.: Patient-specific prediction of intrinsic mechanical loadings on sub-muscular pectoral pacemaker implants based on an inter-species transfer function. J. Biomech. 44, 2525–2531 (2011)

    Article  Google Scholar 

  9. de Vaal, M.H., Neville, J., Scherman, J., Zilla, P., Litow, M., Franz, T.: The in vivo assessment of mechanical loadings on pectoral pacemaker implants. J. Biomech. 43, 1717–1722 (2010)

    Article  Google Scholar 

  10. de Vaal, M.H., Neville, J., Scherman, J., Zilla, P., Litow, M., Franz, T.: Mechanical loadings on pectoral pacemaker implants: correlation of in-line and transverse force of the pectoralis major. Ann. Biomed. Eng. 38, 3338–3346 (2010)

    Article  Google Scholar 

  11. Ding, J., Lee, S.C.K., Johnston, T.E., Wexler, A.S., Scott, W.B., Binder-Macleod, S.A.: Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries. Muscle Nerve 31, 702–712 (2005)

    Article  Google Scholar 

  12. Eng, C.M., Smallwood, L.H., Rainiero, M.P., Lahey, M., Ward, S.R., Lieber, R.L.: Scaling of muscle architecture and fiber types in the rat hindlimb. J. Exp. Biol. 211, 2336–2345 (2008)

    Article  Google Scholar 

  13. Fleagle, J.G.: Primate Adaption and Evolution, 2nd edn. Academic Press, San Diego (1999)

    Google Scholar 

  14. Fortescue, E.B., Berul, C.I., Cecchin, F., Walsh, E.P., Triedman, J.K., Alexander, M.E.: Patient, procedural, and hardware factors associated with pacemaker lead failures in pediatrics and congenital heart disease. Heart Rhythm 1, 150–159 (2004)

    Article  Google Scholar 

  15. Friedman, R.A.: Pacemakers in children: medical and surgical aspects. Tex. Heart Inst. J. 19, 178–184 (1992)

    Google Scholar 

  16. Furman, S.: The future of the pacemaker. Pacing Clin. Electrophysiol. 25, 1–2 (2002)

    Article  Google Scholar 

  17. Garner, B.A., Pandy, M.G.: Musculoskeletal model of the upper limb based on the visible human male dataset. Comput. Methods Biomech. Biomed. Eng. 4, 99–126 (2000)

    Google Scholar 

  18. Hauser, R.G., Hayes, D.L., Kallinen, L.M., Cannom, D.S., Epstein, A.E., Almquist, A.K., Song, S.L., Tyers, G.F.O., Vlay, S.C., Irwin, M.: Clinical experience with pacemaker pulse generators and transvenous leads: an 8-year prospective multicenter study. Heart Rhythm 4, 154–160 (2007)

    Article  Google Scholar 

  19. Hill, T., Lewicki, P.: Statistics Methods and Applications. StatSoft, Tulsa (2007)

    Google Scholar 

  20. Holzbaur, K.R.S., Murray, W.M., Gold, G.E., Delp, S.L.: Upper limb muscle volumes in adult subjects. J. Biomech. 40, 742–749 (2007)

    Article  Google Scholar 

  21. Kenny, T.: The Nuts and Bolts of Cardiac Pacing. Blackwell Futura, Malden (2005)

    Book  Google Scholar 

  22. Kistler, P.M., Eizenberg, N., Fynn, S.P., Mond, H.G.: The subpectoral pacemaker implant: it isn’t what it seems. Pacing Clin. Electrophysiol. 27, 361–364 (2004)

    Article  Google Scholar 

  23. Knaflitz, M., Merletti, R., De Luca, C.J.: Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J. Appl. Physiol. 68, 1657–1667 (1990)

    Google Scholar 

  24. Kron, J., Herre, J., Renfroe, E.G., Rizo-Patron, C., Raitt, M., Halperin, B., Gold, M., Goldner, B., Wathen, M., Wilkoff, B., Olarte, A., Yao, Q.: Lead- and device-related complications in the antiarrhythmics versus implantable defibrillators trial. Am. Heart J. 141, 92–98 (2001)

    Article  Google Scholar 

  25. Li, L., Tong, K., Song, R., Koo, T.K.K.: Is maximum isometric muscle stress the same among prime elbow flexors? Clin. Biomech. 22, 874–883 (2007)

    Article  Google Scholar 

  26. Lieber, R., Fridén, J.: Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23, 1647–1666 (2000)

    Article  Google Scholar 

  27. Maisel, W.H., Moynahan, M., Zuckerman, B.D., Gross, T.P., Tovar, O.H., Tillman, D.-B., Schultz, D.B.: Pacemaker and ICD generator malfunctions: analysis of food and drug administration annual reports. J. Am. Med. Assoc. 295, 1901–1906 (2006)

    Article  Google Scholar 

  28. Marden, J.H., Allen, L.R.: Molecules, muscles, and machines: universal performance characteristics of motors. Proc. Natl. Acad. Sci. U. S. A. 99, 4161–4166 (2002)

    Article  Google Scholar 

  29. Mattke, S., Muller, D., Markewitz, A., Kaulbach, H., Schmockel, M., Drwarth, U., Hoffmann, E., Steinbeck, G.: Failures of epicardial and transvenous leads for implantable cardioverter defibrillators. Am. Heart J. 130, 1040–1044 (1995)

    Article  Google Scholar 

  30. Maughan, R.J., Watson, J.S., Weir, J.: Strength and cross-sectional area of human skeletal muscle. J. Physiol. 338, 37–49 (1983)

    Google Scholar 

  31. Mendez, J., Keys, A.: Density and composition of mammalian muscle. Metabolism 9, 184–188 (1960)

    Google Scholar 

  32. Pasquet, B., Carpentier, A., Duchateau, J., Hainaut, K.: Muscle fatigue during concentric and eccentric contractions. Muscle Nerve 23, 1727–1735 (2000)

    Article  Google Scholar 

  33. Powell, P.L., Roy, R.R., Kanim, P., Bello, M.A., Edgerton, V.R.: Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J. Appl. Physiol. 57, 1715–1721 (1984)

    Google Scholar 

  34. Shmulewitz, A., Langer, R., Patton, J.: Convergence in biomedical technology. Nat. Biotechnol. 24, 277–280 (2006)

    Article  Google Scholar 

  35. Spitzer, V., Ackerman, M.J., Scherzinger, A.L., Whitlock, D.: The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3, 118–130 (1996)

    Article  Google Scholar 

  36. Van Loocke, M., Lyons, C.G., Simms, C.K.: Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. J. Biomech. 41, 1555–1566 (2008)

    Article  Google Scholar 

  37. Viano, D.C., King, A.I.: Biomechanics of chest and abdomen impact. In: Bronzino, J.D. (ed.) The Biomedical Engineering Handbook, vol. 1, 2nd edn, pp. 398–409. CRC Press LLC, Boca Raton (2000)

    Google Scholar 

  38. Vining, G.G.: Statistical Methods for Engineers. Brooks/Cole, London (1998)

    Google Scholar 

  39. Voisin, J.L.: Clavivle, a neglected bone: morphology and relation to arm movements and shoulder architecture in primates. Anat. Rec. 288A, 944–953 (2006)

    Article  Google Scholar 

  40. Ward, S.R., Lieber, R.L.: Density and hydration of fresh and fixed human skeletal muscle. J. Biomech. 38, 2317–2320 (2005)

    Article  Google Scholar 

  41. Westerterp-Plantenga, M.S., Goris, A.H.C., Meijer, E.P., Westerterp, K.R.: Habitual meal frequency in relation to resting and activity-induced energy expenditure in human subjects: the role of fat-free mass. Br. J. Nutr. 90, 643–649 (2003)

    Article  Google Scholar 

  42. Wilkie, D.R.: The relation between force and velocity in human muscle. J. Physiol. 110, 249–280 (1949)

    Google Scholar 

  43. Zhang, J.Y., Chen, S.J., Cooke, D.J., Hansgen, A.R., Wu, H.A., Carroll, J.D., Giudici, M.: Analysis of intracardiac lead bending stresses and motion characteristics of RVA versus RVOS pacing leads using an innovative 3-D reconstruction technique. In: Summer Bioengineering Conference, Sonesta Beach Resort in Key Biscayne, Florida (2003)

    Google Scholar 

  44. Zhao, Y., Baxter, W., Johnson, B., Schendel, M., McCarty, J., McMahon, C., Lahm, R., Sun, H., Morissette, J., Laske, T., Miller, J.: The use of nonlinear fea modelling to determine the in vivo cardiac pacing lead coils for fatigue evaluation. In: Summer Bioengineering Conference, Sonesta Beach Resort in Key Biscayne, Florida (2003)

    Google Scholar 

Download references

Acknowledgments

The authors thank Professor Stephen Beningfield, Petronella Samuels, Sharon Heyne and Nazlea Behardien-Peters of the Department of Radiology, University of Cape Town, for MRI and CT imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Franz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franz, T., de Vaal, M.H., Neville, J., Scherman, J., Litow, M., Zilla, P. (2013). In Vivo Mechanical Loading Conditions of Pectorally Implanted Cardiac Pacemakers. In: Franz, T. (eds) Cardiovascular and Cardiac Therapeutic Devices. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2013_160

Download citation

  • DOI: https://doi.org/10.1007/8415_2013_160

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53835-3

  • Online ISBN: 978-3-642-53836-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics