Skip to main content

Multiscale Elastic Models of Collagen Bio-structures: From Cross-Linked Molecules to Soft Tissues

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 14))

Abstract

Mechanics of collagen bio-structures at different scales (nano, micro, and macro) is addressed, aiming to describe multiscale mechanisms affecting the constitutive response of soft collagen-rich tissues. Single-scale elastic models of collagen molecules, fibrils, and crimped fibers are presented and integrated by means of consistent inter-scale relationships and homogenization arguments. In this way, a unique modeling framework based on a structural multiscale approach is obtained, which allows to analyze the macroscale mechanical behavior of soft collagenous tissues. It accounts for the dominant mechanisms at lower scales without introducing phenomenological descriptions. Comparisons between numerical results obtained via present model and the available experimental data in the case of tendons and aortic walls prove present multiscale approach to be effective in capturing the deep link between histology and mechanics, opening to the possibility of developing patient-specific diagnostic and clinical tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The persistence length is the maximum contour length over which the corresponding molecular segment appears as straight under thermal fluctuations.

References

  1. van Holde, K.E., Matthews, C.: Biochemistry. Benjamin/Cummings Publishing Company Inc., Menlo Park (1995)

    Google Scholar 

  2. Fratzl, P.: Collagen: Structure and Mechanics. Springer, New York (2008)

    Google Scholar 

  3. Bruel, A., Oxlund, H.: Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127, 155–165 (1996)

    Article  Google Scholar 

  4. Bruel, A., Ørtoft, G., Oxlund, H.: Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats. Atherosclerosis 140, 135–145 (1998)

    Article  Google Scholar 

  5. Mao, J.R., Bristow, J.: The Ehlers–Danlos syndrome: on beyond collagens. J. Clin. Invest. 107, 1063–1069 (2001)

    Article  Google Scholar 

  6. Carmo, M., Colombo, L., Bruno, A., Corsi, F.R.M., Roncoroni, L., Cuttin, M.S., Radice, F., Mussini, E., Settembrini, P.G.: Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 23, 543–549 (2002)

    Article  Google Scholar 

  7. Järvinen, T.A.H., Järvinen, T.L.N., Kannus, P., Józsa, L., Järvinen, M.: Collagen fibres of the spontaneously ruptured human tendons display decreased thickness and crimp angle. J. Orthop. Res. 22, 1303–1309 (2004)

    Article  Google Scholar 

  8. Maceri, F., Marino, M., Vairo, G.: A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J. Biomech. 43, 355–363 (2010)

    Article  Google Scholar 

  9. Buehler, M.J., Wong, S.Y.: Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 93, 37–43 (2007)

    Article  Google Scholar 

  10. Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolecules 28, 8759–8770 (1995)

    Article  Google Scholar 

  11. MacKintosh, F.C., Käs, J., Janmey, P.A.: Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995)

    Article  Google Scholar 

  12. Sun, Y.L., Luo, Z.P., Fertala, A., An, K.N.: Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun. 295, 382–386 (2002)

    Article  Google Scholar 

  13. Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997)

    Article  Google Scholar 

  14. Holzapfel, G.A., Ogden, R.W.: On the bending and stretching elasticity of biopolymer filaments. J. Elast. 104, 319–342 (2010)

    Article  MathSciNet  Google Scholar 

  15. Maceri, F., Marino, M., Vairo, G.: Elasto-damage modeling of biopolymer molecules response. Comput. Model. Eng. Sci. (2012, to appear) ISSN: 1526-1492

    Google Scholar 

  16. Gautieri, A., Buehler, M.J., Redaelli, A.: Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. J. Mech. Behav. Biomed. Mat. 2, 130–137 (2009)

    Article  Google Scholar 

  17. Eyre, D.R., Weis, M.A., Wu, J.J.: Advances in collagen cross-link analysis. Methods 45(1), 65–74 (2008)

    Article  Google Scholar 

  18. Orgel, J.P.R.O., Irving, T.C., Miller, A., Wess, T.J.: Microfibrillar structure of type I collagen in situ. Proc. Nat. Acad. Sci. USA 103, 9001–9005 (2006)

    Article  Google Scholar 

  19. Petruska, J.A., Hodge, A.J.: A subunit model for the tropocollagen macromolecule. Proc. Natl Acad. Sci. USA 51, 871–876 (1964)

    Article  Google Scholar 

  20. Pins, G.D., Christiansen, D.L., Patel, R., Silver, F.H.: Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J. 73, 2164–2172 (1997)

    Article  Google Scholar 

  21. Redaelli, A., Vesentini, S., Soncini, M., Vena, P., Mantero, S., Montevecchi, F.M.: Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons—a computational study from molecular to microstructural level. J. Biomech. 36, 1555–1569 (2003)

    Article  Google Scholar 

  22. Craig, A.S., Birtles, M.J., Conway, J.F., Parry, D.A.: An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age. Connect. Tissue Res. 19, 51–62 (1989)

    Article  Google Scholar 

  23. Provenzano, P.P., Vanderby, R.J.: Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol. 25, 71–84 (2006)

    Article  Google Scholar 

  24. Fessel, G., Snedeker, J.G.: Equivalent stiffness after glycosaminoglycan depletion in tendon—an ultra-structural finite element model and corresponding experiments. J. Theor. Biol. 268, 77–83 (2011)

    Article  Google Scholar 

  25. Martini, F.H., Timmons, M.J., Tallitsch, R.B.: Human Anatomy. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  26. Sasaki, N., Odajima, S.: Elongation mechanism of collagen fibrils and force–strain relations of tendon at each level of structural hierarchy. J. Biomech. 29, 1131–1136 (1996)

    Article  Google Scholar 

  27. Hansen, K.A., Weiss, J.A., Barton, J.K.: Recruitment of tendon crimp with applied tensile strain. J. Biomech. Eng. 124, 72–77 (2002)

    Article  Google Scholar 

  28. Yamamoto, E., Kogawa, D., Tokura, S., Hayashi, K.: Biomechanical response of collagen fascicles to restressing after stress deprivation during culture. J. Biomech. 40, 2063–2070 (2007)

    Article  Google Scholar 

  29. Kannus, P.: Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10, 312–320 (2000)

    Article  Google Scholar 

  30. Silver, F.H., Freeman, J.W., Horvath, I., Landis, W.J.: Molecular basis for elastic energy storage in mineralized tendon. Biomacromolecules 2, 750–756 (2001)

    Article  Google Scholar 

  31. Wolinsky, H., Seymour, G.: A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20, 99–111 (1967)

    Article  Google Scholar 

  32. Clark, J.M., Glagov, S.: Transmural organization of the arterial media—the lamellar unit revisited. Arteriosclerosis 5, 19–34 (1985)

    Article  Google Scholar 

  33. Wolinsky, H., Seymour, G.: Comparison of abdominal and thoracic aortic medial structure in mammals. Circ. Res. 25, 677–686 (1969)

    Article  Google Scholar 

  34. Hallock, P., Benson, I.C.: Studies on the elastic properties of human isolated aorta. J. Clin. Invest. 16, 595–602 (1937)

    Article  Google Scholar 

  35. Åstrand, H., Stålhand, J., Karlsson, M., Sonesson, B., Länne, T.: In vivo estimation of the contribution of elastin and collagen to the mechanical properties in the human abdominal aorta: effects of age and sex. J. Appl. Phys. 110:176–187 (2011)

    Google Scholar 

  36. O’Connell, M.K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R., Dalman, R.L., Zarins, C.K., Denk, W., Taylor, C.A.: The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol. 27, 171–181 (2008)

    Article  Google Scholar 

  37. Behmoaras, J., Osborne-Pellegrin, M., Gauguier, D., Jacob, M.P.: Characteristics of the aortic elastic network and related phenotypes in seven inbred rat strains. Am. J. Physiol. Heart. Circ. Physiol. 288, 769–777 (2005)

    Article  Google Scholar 

  38. Merrilees, M., Tiang, K.M., Scott, L.: Changes in collagen fibril diameters across artery walls including a correlation with glycosaminoglycan content. Connect. Tissue Res. 16, 237–257 (1987)

    Article  Google Scholar 

  39. Rachev, A., Stergiopulos, N., Meister, J.J.: Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J. Biomech. 29, 635–642 (1996)

    Article  Google Scholar 

  40. Zhang, W., Herrera, C., Atluri, S.N., Kassab, G.S.: The effect of longitudinal pre-stretch and radial constraint on the stress distribution in the vessel wall: a new hypothesis. Mech. Chem. Biosyst. 2, 41–52 (2005)

    Google Scholar 

  41. Kassab, G.S.: Biomechanics of the cardiovascular system: the aorta as an illustratory example. J. R. Soc. Interface 3, 719–740 (2006)

    Article  Google Scholar 

  42. Fung, Y.C.: Biorheology of soft tissues. Biorheology 10, 199–212 (1973)

    Google Scholar 

  43. Yin, L., Elliott, D.M.: A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tendons. J. Biomech. 37, 907–916 (2004)

    Article  Google Scholar 

  44. Comninou, M., Yannas, I.V.: Dependance of stress–strain nonlinearity of connective tissues on the geometry of collagen fibers. J. Biomech. 9, 427–433 (1976)

    Article  Google Scholar 

  45. Lanir, Y.: A structural theory for the homogeneous biaxial stress–strain relationships in flat collagenous tissues. J. Biomech. 12, 423–436 (1979)

    Article  Google Scholar 

  46. Freed, A.D., Doehring, T.C.: Elastic model for crimped collagen fibrils. J. Biomech. Eng. 127, 587–593 (2005)

    Article  Google Scholar 

  47. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A Solids 21, 441–463 (2002)

    Article  MATH  Google Scholar 

  49. Ciarletta, P., Micera, S., Accoto, D., Dario, P.: A novel microstructural approach in tendon viscoelastic modelling at the fibrillar level. J. Biomech. 39, 2034–2042 (2006)

    Article  Google Scholar 

  50. Tang, H., Buehler, M.J., Moran, B.: A constitutive model of soft tissue: from nanoscale collagen to tissue continuum. Ann. Biomed. Eng. 37, 1117–1130 (2009)

    Article  Google Scholar 

  51. Maceri, F., Marino, M., Vairo, G.: From cross-linked collagen molecules to arterial tissue: a nano-micro-macroscale elastic model. Acta Mech. Solida Sin. 23(S1), 98–108 (2010)

    Google Scholar 

  52. Marino, M., Vairo, G.: Stress and strain localization in stretched collagenous tissues via a multiscale modeling approach. Comput. Methods Biomech. Biomed. Engin. (2012). doi:10.1080/10255842.2012.658043

  53. Maceri, F., Marino, M., Vairo, G.: An insight on multiscale tendon modeling in muscle-tendon integrated behavior. Biomech. Model. Mechanobiol. 11, 505–517 (2011)

    Article  Google Scholar 

  54. Bozec, L., Horton, M.: Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy. Biophys. J. 88, 4223–4231 (2005)

    Article  Google Scholar 

  55. Holmes, D.F., Graham, H.K., Trotter, J.A., Kadler, K.E.: STEM/TEM studies of collagen fibril assembly. Micron 32, 273–285 (2001)

    Article  Google Scholar 

  56. Buehler, M.J.: Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J Mech. Behav. Biomed. Mat. 1, 59–67 (2008)

    Article  Google Scholar 

  57. Bailey, A.J.: Molecular mechanisms of ageing in connective tissues. Mech. Ageing Dev. 122, 735–755 (2001)

    Article  Google Scholar 

  58. Couppé, C., Hansen, P., Kongsgaard, M., Kovanen, V., Suetta, C., Aagaard, P., Kjær, M., Magnusson, S.P.: Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J. Appl. Physiol. 107:880–886 (2009)

    Google Scholar 

  59. Marino, M., Vairo, G.: Equivalent stiffness and compliance of curvilinear elastic fibers. In: Maceri, F., Frémond, M. (eds.) Mechanics, Models and Methods in Civil Engineering. Lecture Notes in Applied & Computational Mechanics, vol. 61, pp. 309–332. Springer, Berlin (2011)

    Google Scholar 

  60. Kollar, L.P., Springer, G.S.: Mechanics of Composite Structures. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  61. Screen, H.R.C., Lee, D.A., Bader, D.L., Shelton, J.C.: An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc. Inst. Mech. Eng. 218, 109–119 (2004)

    Google Scholar 

  62. Lavagnino, M., Arnoczky, S.P., Caballero, O., Kepich, E., Haut R., C.: A finite element model predicts the mechanotrasduction of tendon cells to cyclic tensile loading. Biomech. Model. Mechanobiol. 7, 405–416 (2008)

    Article  Google Scholar 

  63. Auricchio, F., Sacco, E., Vairo, G.: A mixed FSDT finite element for monoclinic laminated plates. Comput. Struct. 84, 624–639 (2006)

    Article  Google Scholar 

  64. Zulliger, M.A., Rachev, A., Stergiopulos, N.: A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am. J. Physiol. Heart Circ. Physiol. 287, 1335–1343 (2004)

    Article  Google Scholar 

  65. Åstrand, H., Rydén-Ahlgren, Å., Sandgren, T., Länne, T.: Age-related increase in wall stress of the human abdominal aorta: an in vivo study. J. Vasc. Surg. 42:926–931 (2005)

    Google Scholar 

  66. Cattell, M.A., Anderson, J.C., Hasleton, P.S.: Age-related changes in amounts and concentrations of collagen and elastin in normotensive human thoracic aorta. Clin. Chim. Acta 245, 73–84 (1996)

    Article  Google Scholar 

  67. Marklund, E., Varna, J.: Modeling the effect of helical fiber structure on wood fiber composite elastic properties. Appl. Compos. Mater. 16, 245–262 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Professor Franco Maceri for valuable suggestions and fruitful discussions on this paper.

This work was developed within the framework of Lagrange Laboratory, a European research group comprising CNRS, CNR, the Universities of Rome “Tor Vergata”, Calabria, Cassino, Pavia, and Salerno, Ecole Polytechnique, University of Montpellier II, ENPC, LCPC, and ENTPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Marino .

Editor information

Editors and Affiliations

Appendix

Appendix

The incremental elastic equilibrium solution for the multi-layered aortic cylinder, comprising \(N\) identical media lamellar units (MLUs) and loaded with a uniform internal pressure increment \(\dot{p}\), is herein briefly reported. Reference is made to the linearly elastic solution proposed in [67], considering the problem as an axisymmetric generalized plane strain problem, characterized by a given non-vanishing constant direct strain increment \(\dot{\varepsilon}_o\) along the cylinder axis \(z\). Accordingly, for the \(k\)th MLU, the incremental components of the displacement field in a cylindrical system of coordinates result in

$$ \dot{u}_{\rho}^k= A_1^k\rho^{\alpha_k} +A_2^k\rho^{-\alpha_k} + \dot{\varepsilon}_o a_1^k \rho + B^k a_{2}^k \rho^2, $$
(36)
$$ \dot{u}_{\varphi}^k=B^k \rho z, $$
(37)
$$ \dot{u}_{z}^k =\dot{\varepsilon}_o z. $$
(38)

The non-trivial increments of strain components are

$$ \dot \varepsilon_\rho^k = \frac{\partial \dot u_\rho^k}{\partial \rho},\qquad \dot \varepsilon_\varphi^k =\frac{\dot u_\rho^k}{\rho},\qquad \dot \gamma_{z\varphi}^k =B^k\rho, $$
(39)

and the components of stress increments are

$$ \dot{\sigma}_{\rho}^k=A_1^k\beta_{\rho 1}^k\rho^{\alpha_k-1} +A_2^k\beta_{\rho 2}^k\rho^{-\alpha_k-1} + \dot{\varepsilon}_o \beta_{\rho 3}^k + B^k \beta_{\rho 4}^k \rho, $$
(40)
$$ \dot{\sigma}_{\varphi}^k=A_1^k\beta_{\varphi 1}^k\rho^{\alpha_k-1} +A_2^k\beta_{\varphi 2}^k\rho^{-\alpha_k-1} + \dot{\varepsilon}_o \beta_{\varphi 3}^k + B^k \beta_{\varphi 4}^k \rho,\\ $$
(41)
$$ \dot{\sigma}_{z}^k=A_1^k\beta_{z 1}^k\rho^{\alpha_k-1} +A_2^k\beta_{z 2}^k\rho^{-\alpha_k-1} + \dot{\varepsilon}_o \beta_{z 3}^k + B^k \beta_{z 4}^k \rho, $$
(42)
$$ \dot{\tau}_{z\varphi}^k=A_1^k \beta_{\gamma 1}^k\rho^{\alpha_k-1} +A_2^k \beta_{\gamma 2}^k\rho^{-\alpha_k-1} + \dot{\varepsilon}_o \beta_{\gamma 3}^k + B^k \beta_{\gamma 4}^k \rho, $$
(43)

where

$$ \beta_{q 1}^k = \bar{C}^k_{g2}+\alpha_k\bar{C}^k_{g3}, \qquad \beta_{q 2}^k = \bar{C}^k_{g2}-\alpha_k\bar{C}^k_{g3}, \\ $$
(44)
$$ \beta_{q 3}^k = \bar{C}^k_{g1}+(\bar{C}^k_{g2}+\bar{C}^k_{g3})a_1^k, \qquad \beta_{q 4}^k = \bar{C}^k_{g6}+(\bar{C}^k_{g2}+2\bar{C}^k_{g3})a_2^k, $$
(45)

with the index \(q=z,\varphi,\rho,\gamma\) corresponding to the \(g\)-index values \(g=1,2,3,6\), respectively, and with

$$ \alpha_k^2=\bar{C}^k_{22}/\bar{C}^k_{33}, $$
(46)
$$ a_1^k = (\bar{C}^k_{12}-\bar{C}^k_{13}) / [\bar{C}^k_{33}(1-\alpha_k^2)], \qquad a_2^k=(\bar{C}^k_{26}-2\bar{C}^k_{36})/[\bar{C}^k_{33}(4-\alpha_k^2)], $$
(47)

\(\bar{C}_{ij}^k\) denoting the \((i,j)\) component of the stiffness matrix \({\mathbb{\bar C}}^k\) for the \(k\)th MLU.

It is worth pointing out that during the deformation path both strain and stress components, and thereby also the strain-dependent MTU material properties, are \(z\)- and \(\varphi\)-independent.

Assuming the MLUs as perfectly bonded layers, the \(3N\) unknown constants \(A_1^k,\,A_2^k,\,B^k\) (with \(k=1...N\)) are solved by imposing the following \(3(N-1)\) continuity conditions at the MLU’s interfaces:

$$ \dot{u}_\rho^k(r_k) = \dot{u}_\rho^{k+1}(r_k), \qquad \dot{u}_\varphi^k(r_k) = \dot{u}_\varphi^{k+1}(r_k), \qquad \dot{\sigma}_r^k(r_k) = \dot{\sigma}_r^{k+1}(r_k), $$
(48)

and the three equilibrium incremental relationships:

$$ \dot{\sigma}_r(r_i)=-\dot{p}, \qquad \dot{\sigma}_r(r_i+h_a)=0, \qquad 2\pi\sum_{k=1}^{N} \int_{r_{k-1}}^{r_k}\rho^2 \dot{\tau}_{z\varphi}^k d\rho = 0, $$
(49)

the latter prescribing the average torque related to the tangential stress increment \(\dot{\tau}_{z\varphi}\) to be zero.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marino , M., Vairo, G. (2013). Multiscale Elastic Models of Collagen Bio-structures: From Cross-Linked Molecules to Soft Tissues. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_154

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_154

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics