Skip to main content

Translational Research: Multi-Scale Models of the Pulmonary Circulation in Health and Disease

  • Chapter
  • First Online:
Book cover Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Abstract

The pulmonary circulation is a unique low resistance system that carries almost the entire cardiac output, and is responsible for the essential role of providing oxygenated blood to the body. As the pulmonary circulation differs from the systemic circulation in its development, structure, and function, it is often most appropriate to study the mechanisms that contribute toward pulmonary vascular disease separately from those of systemic vascular disease at the genetic, cellular, tissue and organ level. Here we review the development of multi-scale, anatomically based models of the pulmonary circulation. These models aim to describe the interaction of structural and functional aspects of the pulmonary circulation that are the most important in determining the effective uptake of oxygen to the blood. We describe how these models have been used to understand normal lung physiology and to explain outcomes in pulmonary disease. Finally, we consider the future of multi-scale modeling in the pulmonary circulation and discuss what can be learned from well-developed multi-scale models of the pulmonary airspaces that interact closely with the lung’s circulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963)

    Google Scholar 

  2. Levitzky, M.G.: Pulmonary Physiology, 7th edn. The McGraw-Hill Companies, Inc., New York (2007)

    Google Scholar 

  3. Grassino, A.E., Anthonisen, N.R.: Chest wall distortion and regional lung volume distribution in erect humans. J. Appl. Physiol. 39(6), 1004–1007 (1975)

    Google Scholar 

  4. Whitfield, A., Waterhouse, J., Arnott, W.M.: The total lung volume and its subdivisions. II. The effect of posture. Brit J Soc Med 4, 86–97 (1950)

    Google Scholar 

  5. Hoffman, E.A., Sinak, L.J., Riman, E.L.: Effect of body position on regional lung expansion: A computer tomographic approach. Physiologist 26(4), A-69 (1983)

    Google Scholar 

  6. Amis, T., Jones, H., Hughes, J.: Effect of posture on inter-regional distribution of pulmonary perfusion and VA/Q ratios in man. Respir. Physiol. 56, 169–182 (1984)

    Article  Google Scholar 

  7. West, J.B.: Regional differences in gas exchange in the lung of erect man. J. Appl. Physiol. 17(6), 893–898 (1962)

    Google Scholar 

  8. Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)

    Article  Google Scholar 

  9. Prisk, G.K., Yamada, K., Henderson, A.C., Arai, T.J., Levin, D.L., Buxton, R.B., Hopkins, S.R.: Pulmonary perfusion in the prone and supine postures in the normal human lung. J. Appl. Physiol. 103, 883–894 (2007)

    Article  Google Scholar 

  10. Albert, M.S., Cates, G.D., Driehuys, B., Happer, W., Saam, B., Springer Jr., C.S., Wishnia, A.: Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486), 199–201 (1994)

    Article  Google Scholar 

  11. West, J.B., Dollery, C.T., Naimark, A.: Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J. Appl. Physiol. 19, 713–724 (1964)

    Google Scholar 

  12. Hughes, M., West, J.B.: Point: Gravity is the major factor determining the distribution of blood flow in the human lung. J. Appl. Physiol. 104(5), 1531–1533 (2008)

    Article  Google Scholar 

  13. West, J.: Importance of gravity in determining the distribution of pulmonary blood flow. J. Appl. Physiol. 93(5), 1888–1889 (2002)

    Google Scholar 

  14. Glenny, R.W.: Counterpoint: gavity is not the major factor determining the distribution of blood flow in the healthy human lung. J. Appl. Physiol. 104(5), 1533–1535 (2008)

    Article  Google Scholar 

  15. Glenny, R.W., Bernard, S., Robertson, H.T., Hlastala, M.P.: Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J. Appl. Physiol. 86(2), 623–632 (1999)

    Google Scholar 

  16. Glenny, R.W., Lamm, W.J.E., Albert, R.K., Robertson, H.T.: Gravity is a minor determinant of pulmonary blood flow distribution. J. Appl. Physiol. 71, 620–629 (1991)

    Google Scholar 

  17. Clark, A.R., Tawhai, M.H., Burrowes, K.S.: The interdependent contributions of gravitational and structural features to the distribution of pulmonary perfusion in a multi-scale model of the pulmonary circulation. J. Appl. Physiol. 110, 943–945 (2011)

    Article  Google Scholar 

  18. Rideout, V., Katra, J.: Computer simulation of the pulmonary circulation. Simulation 12, 239–245 (1969)

    Google Scholar 

  19. Parker, J.C., Cave, C.B., Ardell, J.L., Hamm, C.R., Williams, S.G.: Vascular tree structure affects lung blood flow heterogeneity simulated in three dimensions. J. Appl. Physiol. 83(4), 1370–1382 (1997)

    Google Scholar 

  20. Glenny, R.W., Robertson, H.T.: Fractal modeling of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70(3), 1024–1030 (1991)

    Google Scholar 

  21. Bshouty, Z., Younes, M.: Distensibility and pressure-flow relationship of the pulmonary circulation. II. Multibranched model. J. Appl. Physiol. 68(4), 1514–1527 (1990)

    Google Scholar 

  22. Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Anatomically-based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J. Appl. Physiol. 99, 731–738 (2005)

    Article  Google Scholar 

  23. Marshall, B., Marshall, C.: A model for hypoxic constriction of the pulmonary circulation. J. Appl. Physiol. 64(1), 68–77 (1988)

    Article  Google Scholar 

  24. Nelin, L.D., Krenz, G.S., Rickaby, D.A., Linehan, J.H., Dawson, C.A.: A distensible vessel model applied to hypoxic pulmonary vasoconstriction in the neonatal pig. J. Appl. Physiol. 74(5), 2049–2056 (1993)

    Google Scholar 

  25. Burrowes, K.S., Hoffman, E.A., Tawhai, M.H.: Species-specific pulmonary arterial asymmetry determines species differences in regional pulmonary perfusion. Ann. Biomed. Eng. 37(12), 2497–2509 (2009)

    Article  Google Scholar 

  26. Burrowes, K.S., Hunter, P.J., Tawhai, M.H.: Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model. Acad. Radiol. 12(11), 1464–1474 (2005)

    Article  Google Scholar 

  27. Burrowes, K.S., Swan, A.J., Warren, N.J., Tawhai, M.H.: Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. Philos. Trans. R. Soc. A 366(1879), 3247–3263 (2008)

    Article  Google Scholar 

  28. Burrowes, K.S., Tawhai, M.H.: Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir. Physiol. Neurobiol. 154(3), 515–523 (2006)

    Article  Google Scholar 

  29. Burrowes, K.S., Tawhai, M.H.: Coupling of lung tissue tethering force to fluid dynamics in the pulmonary circulation. Int. J. Numer. Methods. Biomed. Eng. 26, 862–875 (2010)

    MATH  Google Scholar 

  30. Burrowes, K.S., Tawhai, M.H., Hunter, P.J.: Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network. Ann. Biomed. Eng. 32(4), 585–595 (2004)

    Article  Google Scholar 

  31. Clark, A.R., Burrowes, K.S., Tawhai, M.H.: Contribution of serial and parallel micro-perfusion to spatial variability in pulmonary inter- and intra-acinar blood flow. J. Appl. Physiol. 108(5), 1116–1126 (2010)

    Article  Google Scholar 

  32. Clark, A.R., Burrowes, K.S., Tawhai, M.H.: The impact of micro-embolism size on haemodynamic changes in the pulmonary micro-circulation. Respir. Physiol. Neurobiol. 175, 365–374 (2011)

    Article  Google Scholar 

  33. Burrowes, K.S., Clark, A.R., Marcinkowski, A., Wilsher, M.L., Milne, D.G., Tawhai, M.H.: Pulmonary embolism: predicting disease severity. Philos. Trans. R. Soc. A 369(1954), 4145–4148 (2011)

    Article  MathSciNet  Google Scholar 

  34. Burrowes, K.S., Clark, A.R., Tawhai, M.H.: Blood flow redistribution and ventilation–perfusion mismatch during embolic pulmonary occlusion. Pulm. Circ. 1(3), 365–376 (2011)

    Article  Google Scholar 

  35. MacLean, M., Herve, P., Eddahibi, S., Adnot, S.: 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol. 131(2), 161–168 (2000)

    Article  Google Scholar 

  36. Howell, J.B.L., Permutt, S., Proctor, D.F., Riley, R.L.: Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16(1), 71–76 (1961)

    Google Scholar 

  37. Horsfield, K.: Morphometry of the small pulmonary arteries in man. Circ. Res. 42, 537–593 (1978)

    Article  Google Scholar 

  38. Pump, K.K.: The circulation in the peripheral parts of the human lung. Chest 49(2), 119–129

    Google Scholar 

  39. Clough, A.V., Audi, S.H., Molthen, R.C., Krenz, G.S.: Lung circulation modeling: status and prospects. Proc. IEEE 94(4), 753–768 (2006)

    Article  Google Scholar 

  40. Hillier, S.C., Graham, J.A., Hanger, C.C., Godbey, P.S., Glenny, R.W., Wagner Jr., W.W.: Hypoxic vasoconstriction in pulmonary arterioles and venules. J. Appl. Physiol. 82(4), 1084–1090 (1997)

    Google Scholar 

  41. Marshall, B.E., Marshall, C.: Continuity of response to hypoxic pulmonary vasoconstriction. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 49, 189–196 (1980)

    Google Scholar 

  42. Elliot, F.M., Reid L.: Some new facts about the pulmonary artery and its branching pattern. Clin Radiol 16, 193–198 (1965)

    Google Scholar 

  43. Huang, W., Yen, R.T., McLaurine, M., Bledsoe, G.: Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81(5), 2123–2133 (1996)

    Google Scholar 

  44. Horsfield, K., Gordon, W.I.: Morphometry of pulmonary veins in man. Lung 159, 211–218 (1981)

    Article  Google Scholar 

  45. Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.: Morphometry of the human pulmonary arterial tree. Circ. Res. 33(2), 190–197 (1973)

    Article  Google Scholar 

  46. Glenny, R.W., Robertson, T.J.: Fractal properties of pulmonary blood flow: charaterization of spatial heterogeneity. J. Appl. Physiol. 69(2), 532–545 (1990)

    Google Scholar 

  47. Tawhai, M.H., Hunter, P.J., Tschirren, J., Reinhardt, J.M., McLennan, G., Hoffman, E.A.: CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97(6), 2310–2321 (2004)

    Article  Google Scholar 

  48. Tawhai, M.H., Pullan, A.J., Hunter, P.J.: Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28(7), 793–802 (2000)

    Article  Google Scholar 

  49. West, J.B.: Respiratory Physiology—The Essentials. Williams and Wilkins, Baltimore (1995)

    Google Scholar 

  50. Yen, M.: Elastic properties of pulmonary blood vessels. In: Respiratory Physiology: An Analytical Approach, pp. 553–560. Marcel Dekker, Inc. (1989)

    Google Scholar 

  51. Krenz, G.S., Dawson, C.A.: Flow and pressure distributions in vascular networks consisting of distensible vessels. Am. J. Physiol. Heart Circ Physiol 284(6), H2192–H2203 (2003)

    Google Scholar 

  52. Glenny, R.W., Lamm, W.J.E., Bernard, S.L., An, D., Chornuk, M., Pool, S., Wagner Jr., W.W., Hlastala, M.P., Rovertson, H.T.: Physiology of a microgravity environment, selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J. Appl. Physiol. 89(3), 1239–1248 (2000)

    Google Scholar 

  53. Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)

    Article  Google Scholar 

  54. Tawhai, M., Nash, N., Lin, C., Hoffman, E.: Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J. Appl. Physiol. 107(3), 912–920 (2009)

    Article  Google Scholar 

  55. Swan, A.J., Clark, A.R., Tawhai, M.H.: A computational model of the topographic distribution of ventilation in healthy human lungs. J. Theor. Biol. 300, 222–231 (2012)

    Article  MathSciNet  Google Scholar 

  56. Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk, G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J. Appl. Physiol. 103(1), 240–248 (2007)

    Article  Google Scholar 

  57. Spilker, R.L., Feinstein, J.A., Parker, D.W., Reddy, V.M., Taylor, C.A.: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35(4), 546–559 (2007)

    Article  Google Scholar 

  58. Clipp, R., Steele, B.N.: Impedance boundary conditions for the pulmonary vasculature including the effects of geometry, compliance, and respiration. IEEE Trans. Biomed. Eng. 56(3), 862–870 (2009)

    Article  Google Scholar 

  59. Ochs, M., Nyengaard, J.R., Jung, A., Knudsen, L., Voigt, M., Wahlers, T., Richter, J., Gundersen, H.J.: The number of alveoli in the human lung. Am. J. Respir. Crit. Care Med. 169(1), 120–124 (2004)

    Article  Google Scholar 

  60. Fung, Y.C., Sobin, S.S.: Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26, 472–488 (1969)

    Google Scholar 

  61. Guntheroth, W.G., Luchtel, D.L., Kawabori, I.: Pulmonary microcirculation: tubules rather than sheet or post. J. Appl. Physiol. 53(2), 510–515 (1982)

    Google Scholar 

  62. Maina, J.N., West, J.B.: Thin and strong! The bioengineering dilema in the structural and functional design of the blood gas barrier. Physiol. Rev. 85, 811–844 (2005)

    Article  Google Scholar 

  63. Fahraeus, R., Lindqvist T.: The viscosity of the blood in narrow capillary tubes. J. Appl. Physiol. 96, 562–568 (1931)

    Google Scholar 

  64. Hogg, J.: Neutrophil kinetics and lung injury. Physiol. Rev. 67(4), 1249–1295 (1987)

    MathSciNet  Google Scholar 

  65. Doerschuk, C.: Neutrophil rheology and transit through capillaries and sinusoids. Am. J. Respir. Crit. Care Med. 159, 1693–1999 (1999)

    Article  Google Scholar 

  66. Fung, Y.C., Sobin, S.S.: Elasticity of the pulmonary alveolar sheet. Circ. Res. 30(4), 451–469 (1972)

    Article  Google Scholar 

  67. Pries, A.R., Secomb, T.W.: Microcirculatory network structures and models. Ann. Biomed. Eng. 28, 916–921 (2000)

    Article  Google Scholar 

  68. Pries, A.R., Secomb, T.W., Gaehtgens, P., Gross, J.F.: Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67(4), 826–834 (1990)

    Article  Google Scholar 

  69. Fenton, B., Wilson, D., Cokelet, G.: Analysis of the effect of measured white blood cell entrance time on hemodynamics in a computer model of a mircovascular bed. Pflugers Arch. 403, 396–401 (1985)

    Article  Google Scholar 

  70. Dhadwal, A., Wiggs, B., Doerschuk, C., Kamm, R.: Effects of anatomic variability on blood flow and pressure gradients in the pulmonary circulation. J. Appl. Physiol. 83(5), 1711–1720 (1997)

    Google Scholar 

  71. Huang, Y., Doerschuk, C.M., Kamm, R.D.: Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol. 90(2), 545–564 (2001)

    Article  Google Scholar 

  72. Fung, Y.C., Sobin, S.S.: Pulmonary alveolar blood flow. Circ. Res. 30(4), 470–490 (1972)

    Article  Google Scholar 

  73. Fung, Y.C., Yen, R.T.: A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60(5), 1638–1650 (1986)

    Google Scholar 

  74. Sobin, S.S., Fung, Y.C., Tremer, H.M., Rosenquist, T.H.: Elasticity of the pulmonary microvascular sheet in the cat. Circ. Res. 30(4), 440–450 (1972)

    Article  Google Scholar 

  75. Sobin, S.S., Tremer, H.M., Fung, Y.C.: Morphometric basis of the sheet-flow concenpt of the alveolar microcirculation in the cat. Circ. Res. 26(3), 397–414 (1970)

    Article  Google Scholar 

  76. Sobin, S.S., Tremer, H.M., Lindal, R.G., Fung, Y.C.: Distensibility of human pulmonary capillary blood vessels in the interalveolar septa. Fed. Proc. 38, 990 (1979)

    Google Scholar 

  77. Read, J.: Redistribution of stratified pulmonary blood flow during exercise. J. Appl. Physiol. 27(3), 374–377 (1969)

    Google Scholar 

  78. Read, J.: Stratified pulmonary blood flow: some consequences in emphysema and pulmonary embolism. Br. Med. J. 2, 44–46 (1969)

    Article  Google Scholar 

  79. Wagner, P., McRae, J., Read, J.: Stratified distribution of blood flow in secondary lobule of the rat lung. J. Appl. Physiol. 22(6), 1115–1123 (1967)

    Google Scholar 

  80. West, J.B., Maloney, J.E., Castle, B.L.: Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs. J. Appl. Physiol. 32(3), 357–361 (1972)

    Google Scholar 

  81. Hughes, J.M., Glazier, J.B., Maloney, J.E., West, J.B.: Effect of lung volume on the distribution of pulmonary blood flow in man. Respir. Physiol. 4(1), 58–72 (1968)

    Article  Google Scholar 

  82. Hopkins, S.R., Arai, T.J., Henderson, A.C., Levin, D.L., Buxton, R.B., Prisk, G.K.: Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans. J. Physiol. 588(Pt 23), 4759–4768 (2010)

    Article  Google Scholar 

  83. Tawhai, M.H., Clark, A.R., Burrowes, K.S.: Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm. Circu. 1(2), 224–238 (2011)

    Article  Google Scholar 

  84. Ben-Tal, A.: Simplified models for gas exchange in the human lungs. J. Theor. Biol. 238, 474–495 (2006)

    Article  Google Scholar 

  85. Kapitan, K., Hempleman, S.: Computer simulation of mammalian gas exchange. Comput. Methods Biol. Med. 16(2), 91–101 (1986)

    Article  Google Scholar 

  86. Monod, J., Wyman, J., Changeaux, J.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–112 (1965)

    Article  Google Scholar 

  87. Tawhai, M., Clark, A., Wilsher, M., Millne, D., Subramaniam, K., Burrowes, K.: Spatial redistribution of perfusion and gas exchange in patient specific models of pulmonary embolism. In: 2012 IEEE International Symposium on Biomedical Imaging. Barcelona, Spain

    Google Scholar 

  88. Wagner, P.D.: The multiple inert gas elimination technique (MIGET). Intensive Care Med. 34(6), 994–1001 (2008)

    Article  Google Scholar 

  89. McIntyre, K., Sasahara, A.: Hemodynamic alterations related to extent of lung scan perfusion defect in pulmonary embolism. J. Nucl. Med. 4, 166–170 (1971)

    Google Scholar 

  90. McIntyre, K., Sasahara, A.: The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am. J. Cardiol. 28(3), 288–294 (1971)

    Article  Google Scholar 

  91. Ghaye, B., Ghuysen, A., Bruyere, P.J., D’Orio, V., Dondelinger, R.F.: Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics 26(1), 23–39; discussion 39–40 (2006) (discussion 39–40)

    Google Scholar 

  92. Malik, A.: Pulmonary microembolism. Physiol. Rev. 63, 1115–1207 (1983)

    MathSciNet  Google Scholar 

  93. Tawhai, M.H., Hunter, P.J.: Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respir. Physiol. 127, 241–248 (2001)

    Article  Google Scholar 

  94. Haefeli-Bleuer, B., Weibel, E.R.: Morphometry of the human pulmonary acinus. Anat. Rec. 220, 401–414 (1988)

    Article  Google Scholar 

  95. Delcroix, M., Mélot, C., Lejeune, P., Leeman, M., Naeije, R.: Effects of vasodilators on gas exchange in acute canine embolic pulmonary hypertension. Anesthesiology 72, 77–84 (1990)

    Google Scholar 

  96. Delcroix, M., Mélot, C., Vachiery, J.-L., Lejeune, P., Leeman, M., Vanderhoeft, P., Naeije, R.: Effects of embolus size on hemodynamics and gas exchange in canine embolic pulmonary hypertension. J. Appl. Physiol. 69(6), 2254–2261 (1990)

    Google Scholar 

  97. Hasinoff, I., Ducas, J., Schick, U., Prewitt, R.: Pulmonary vascular pressure-flow characteristics in canine pulmonary embolism. J. Appl. Physiol. 68(2), 462–467 (1990)

    Google Scholar 

  98. Mélot, C., Delcroix, M., Closset, J., Vanderhoeft, P., Lejeune, P., Leeman, M., Naeije, R.: Starling resistor vs. distensible vessel models for embolic pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 268(2), H817–H827 (1995)

    Google Scholar 

  99. Levine, J.A., Schleusner, S.J., Jensen, M.D.: Energy expenditure of nonexercise activity. Am. J. Clin. Nutr. 72, 1451–1454 (2000)

    Google Scholar 

  100. Nishimura, M., Kiyamoto, K., Suzuki, A., Yamamoto, H., Tsuji, M., Kishi, F., Kawakami, Y.: Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax 44, 215–257 (1989)

    Article  Google Scholar 

  101. Politi, A.Z., Donovan, G.M., Tawhai, M.H., Sanderson, M.J., Lauzon, A., Bates, J.H.T., Sneyd, J.: A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness. J. Theor. Biol. 266, 614–624 (2010)

    Article  Google Scholar 

  102. Wang, I., Politi, A.Z., Tania, N., Bai, Y., Sanderson, M.J., Sneyd, J.: A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys. J. 94(6), 2053–2064 (2008)

    Article  Google Scholar 

  103. Hai, C., Murphy, R.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99–C106 (1988)

    Google Scholar 

  104. Lai-Fook, S.J., Hyatt, R.E.: Effect of parenchyma and length changes on vessel pressure-diameter behavior in pig lungs. J. Appl. Physiol. 47(4), 666–669 (1979)

    Google Scholar 

  105. Donovan, G., Bullimore, S., Elvin, A., Tawhai, M., Bates, J., Lauzon, A., Sneyd, J.: A continuous-binding cross-linker model for passive airway smooth muscle. Biophys. J. 99(10), 3164–3171 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alys R. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clark, A.R., Burrowes, K.S., Tawhai, M.H. (2013). Translational Research: Multi-Scale Models of the Pulmonary Circulation in Health and Disease. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_152

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_152

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics