Skip to main content

Integration of Molecular Signaling into Multiscale Modeling of Cancer

  • Chapter
  • First Online:
Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 14))

  • 8687 Accesses

Abstract

Multiscale modeling has now been well-accepted as a powerful tool to quantitatively represent, simulate, understand, and predict cancer progression and development across multiple biological scales. In this chapter, we focus on a specific type of multiscale cancer models where molecular signaling profiles are explicitly linked to the determination of cellular phenotypic changes. These models are particularly suitable for exploring the relationship between signaling dynamics within each individual cancer cell and the emergent cancer behavior on the multicellular level. We also discuss current challenges and future directions of this molecular signaling-incorporated multiscale cancer modeling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABM:

Agent-based model or agent-based modeling

EGF:

Epidermal growth factor

EGFR:

EGF receptor

EMT:

Epithelial–mesenchymal transition

ERK:

Extracellular signal-regulated kinase

NSCLC:

Non-small cell lung cancer

ODE:

Ordinary differential equation

PDE:

Partial differential equation

PLCγ:

Phopholipase Cγ

TGFβ:

Transforming growth factor β

2D:

Two-dimensional

3D:

Three-dimensional

TEM:

Transendothelial migration

References

  1. Al-Hajj, M., Clarke, M.F.: Self-renewal and solid tumor stem cells. Oncogene 23(43), 7274–7282 (2004)

    Article  Google Scholar 

  2. Balmain, A., Gray, J., Ponder, B.: The genetics and genomics of cancer. Nat. Genet. 33(Suppl), 238–244 (2003)

    Article  Google Scholar 

  3. Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)

    Article  Google Scholar 

  4. Deisboeck, T.S., Zhang, L., Yoon, J., Costa, J.: In silico cancer modeling: is it ready for prime time? Nat. Clin. Pract. 6(1), 34–42 (2009)

    Article  Google Scholar 

  5. Schnell, S., Grima, R., Maini, P.K.: Multiscale modeling in biology—new insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest. Am. Sci. 95(2), 134–142 (2007)

    Google Scholar 

  6. Anderson, A.R., Quaranta, V.: Integrative mathematical oncology. Nat. Rev. Cancer 8(3), 227–234 (2008). doi:10.1038/nrc2329, nrc2329 [pii]

    Google Scholar 

  7. Tracqui, P.: Biophysical models of tumour growth. Rep. Prog. Phys. 72(5) (2009). doi:056701 10.1088/0034-4885/72/5/056701

    Google Scholar 

  8. Cristini, V., Lowengrub, J.S.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  9. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R91 (2010). doi:10.1088/0951-7715/23/1/r01

    Article  MathSciNet  MATH  Google Scholar 

  10. Schaller, G., Meyer-Hermann, M.: Continuum versus discrete model: a comparison for multicellular tumour spheroids. Philos. Trans. 364(1843), 1443–1464 (2006)

    Article  MathSciNet  Google Scholar 

  11. Gatenby, R.A., Silva, A.S., Gillies, R.J., Frieden, B.R.: Adaptive therapy. Cancer Res. 69(11), 4894–4903 (2009)

    Article  Google Scholar 

  12. Wang, Z., Deisboeck, T.S.: Computational modeling of brain tumors: discrete, continuum or hybrid? Sci. Model. Simul. 15, 381–393 (2008)

    Article  Google Scholar 

  13. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. USA. 99(Suppl 3), 7280–7287 (2002)

    Article  Google Scholar 

  14. Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Br. Bioinform. 8(4), 245–257 (2007). 10.1093/bib/bbm024, bbm024[pii]

    Article  Google Scholar 

  15. Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life 12(4), 617–634 (2006)

    Article  Google Scholar 

  16. Spencer, S.L., Gerety, R.A., Pienta, K.J., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Comput. Biol. 2(8), e108 (2006)

    Article  Google Scholar 

  17. Pepper, J.W., Sprouffske, K., Maley, C.C.: Animal cell differentiation patterns suppress somatic evolution. PLoS Comput. Biol. 3(12), e250 (2007)

    Article  Google Scholar 

  18. Schaller, G., Meyer-Hermann, M.: Multicellular tumor spheroid in an off-lattice voronoi-delaunay cell model. Phys. Rev. 71(5 Pt 1), 051910 (2005)

    MathSciNet  Google Scholar 

  19. Pearce, I.G., Chaplain, M.A., Schofield, P.G., Anderson, A.R., Hubbard, S.F.: Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J. Math. Biol. 55(3), 365–388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ramis-Conde, I., Chaplain, M.A., Anderson, A.R.: Mathematical modelling of cancer cell invasion of tissue. Math. Comp. Model. 47, 533–545 (2006)

    Article  MathSciNet  Google Scholar 

  21. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. STKE. 2006(344), re6 (2006)

    Google Scholar 

  22. Postovit, L.M., Seftor, E.A., Seftor, R.E., Hendrix, M.J.: Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res. 66(16), 7833–7836 (2006)

    Article  Google Scholar 

  23. Hendrix, M.J., Seftor, E.A., Seftor, R.E., Kasemeier-Kulesa, J., Kulesa, P.M., Postovit, L.M.: Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer 7(4), 246–255 (2007). 10.1038/nrc2108, nrc2108 [pii]

    Article  Google Scholar 

  24. Zhang, L., Wang, Z., Sagotsky, J.A., Deisboeck, T.S.: Multiscale agent-based cancer modeling. J. Math. Biol. 58(4–5), 545–559 (2009)

    Article  MathSciNet  Google Scholar 

  25. Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1(2005), 0010 (2005)

    Google Scholar 

  26. Friedl, P., Wolf, K.: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3(5), 362–374 (2003)

    Article  Google Scholar 

  27. Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J.H., Saito, K., Saeki, M., Shirouzu, M., Yokoyama, S., Konagaya, A.: A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 373(Pt 2), 451–463 (2003)

    Article  Google Scholar 

  28. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274(42), 30169–30181 (1999)

    Article  Google Scholar 

  29. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20(4), 370–375 (2002)

    Article  Google Scholar 

  30. Mouneimne, G., Soon, L., DesMarais, V., Sidani, M., Song, X., Yip, S.C., Ghosh, M., Eddy, R., Backer, J.M., Condeelis, J.: Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166(5), 697–708 (2004)

    Article  Google Scholar 

  31. Dittmar, T., Husemann, A., Schewe, Y., Nofer, J.R., Niggemann, B., Zanker, K.S., Brandt, B.H.: Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. Faseb. J. 16(13), 1823–1825 (2002)

    Google Scholar 

  32. Santos, S.D., Verveer, P.J., Bastiaens, P.I.: Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9(3), 324–330 (2007)

    Article  Google Scholar 

  33. Athale, C., Mansury, Y., Deisboeck, T.S.: Simulating the impact of a molecular decision-process on cellular phenotype and multicellular patterns in brain tumors. J. Theor. Biol. 233(4), 469–481 (2005)

    Article  Google Scholar 

  34. Athale, C.A., Deisboeck, T.S.: The effects of EGF-receptor density on multiscale tumor growth patterns. J. Theor. Biol. 238(4), 771–779 (2006)

    Article  MathSciNet  Google Scholar 

  35. Lund-Johansen, M., Bjerkvig, R., Humphrey, P.A., Bigner, S.H., Bigner, D.D., Laerum, O.D.: Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res. 50(18), 6039–6044 (1990)

    Google Scholar 

  36. Zhang, L., Athale, C.A., Deisboeck, T.S.: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244(1), 96–107 (2007)

    Article  MathSciNet  Google Scholar 

  37. Alarcon, T., Byrne, H.M., Maini, P.K.: A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. Theor. Biol. 229(3), 395–411 (2004)

    Article  MathSciNet  Google Scholar 

  38. Zhang, L., Strouthos, C.G., Wang, Z., Deisboeck, T.S.: Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math. Comput. Model. 49(1–2), 307–319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Steinbach, J.P., Klumpp, A., Wolburg, H., Weller, M.: Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. Cancer Res. 64(5), 1575–1578 (2004)

    Article  Google Scholar 

  40. Wang, Z., Zhang, L., Sagotsky, J., Deisboeck, T.S.: Simulating non-small cell lung cancer with a multiscale agent-based model. Theor. Biol. Med. Model. 4(1), 50 (2007)

    Article  Google Scholar 

  41. Price, J.T., Wilson, H.M., Haites, N.E.: Epidermal growth factor (EGF) increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur. J. Cancer 32A(11), 1977–1982 (1996)

    Article  Google Scholar 

  42. Xue, C., Wyckoff, J., Liang, F., Sidani, M., Violini, S., Tsai, K.L., Zhang, Z.Y., Sahai, E., Condeelis, J., Segall, J.E.: Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res. 66(1), 192–197 (2006)

    Article  Google Scholar 

  43. Wang, Z., Birch, C.M., Sagotsky, J., Deisboeck, T.S.: Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics 25, 2389–2396 (Oxford, England) (2009)

    Google Scholar 

  44. Ramis-Conde, I., Drasdo, D.: From genotypes to phenotypes: classification of the tumour profiles for different variants of the cadherin adhesion pathway. Phys. Biol. 9(3), 036008 (2012). doi:10.1088/1478-3975/9/3/036008

    Article  Google Scholar 

  45. Conacci-Sorrell, M., Zhurinsky, J., Ben-Ze’ev, A.: The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Investig. 109(8), 987–991 (2002). doi:10.1172/JCI15429

    Google Scholar 

  46. Foty, R.A., Steinberg, M.S.: Cadherin-mediated cell–cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48(5–6), 397–409 (2004). doi:10.1387/ijdb.041810rf

    Article  Google Scholar 

  47. Ramis-Conde, I., Chaplain, M.A., Anderson, A.R., Drasdo, D.: Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol. 6(1), 16008 (2009)

    Article  Google Scholar 

  48. Ramis-Conde, I., Drasdo, D., Anderson, A.R., Chaplain, M.A.: Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J. 95(1), 155–165 (2008)

    Article  Google Scholar 

  49. Christiansen, J.J., Rajasekaran, A.K.: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66(17), 8319–8326 (2006). 10.1158/0008-5472.CAN-06-0410, 66/17/8319 [pii]

    Article  Google Scholar 

  50. Kemler, R., Hierholzer, A., Kanzler, B., Kuppig, S., Hansen, K., Taketo, M.M., de Vries, W.N., Knowles, B.B., Solter, D.: Stabilization of beta-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131(23), 5817–5824 (2004). doi:10.1242/dev.01458

    Article  Google Scholar 

  51. Jankowski, J.A., Bruton, R., Shepherd, N., Sanders, D.S.: Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. Mol. Pathol. 50(6), 289–290 (1997)

    Article  Google Scholar 

  52. Qi, J., Wang, J., Romanyuk, O., Siu, C.H.: Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol. Biol. Cell 17(3), 1261–1272 (2006). 10.1091/mbc.E05-10-0927, E05-10-0927 [pii]

    Article  Google Scholar 

  53. McLachlan, R.W., Kraemer, A., Helwani, F.M., Kovacs, E.M., Yap, A.S.: E-cadherin adhesion activates c-Src signaling at cell–cell contacts. Mol. Biol. Cell 18(8), 3214–3223 (2007). doi:10.1091/mbc.E06-12-1154

    Article  Google Scholar 

  54. Walker, D., Wood, S., Southgate, J., Holcombe, M., Smallwood, R.: An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. J. Theor. Biol. 242(3), 774–789 (2006)

    Article  MathSciNet  Google Scholar 

  55. Walker, D.C., Georgopoulos, N.T., Southgate, J.: From pathway to population–a multiscale model of juxtacrine EGFR-MAPK signalling. BMC Syst. Biol. 2, 102 (2008)

    Article  Google Scholar 

  56. An, G.: Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor. Biol. Med. Model. 5, 11 (2008)

    Article  Google Scholar 

  57. An, G.: A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math. Biosci. 217(1), 43–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. An, G.C., Faeder, J.R.: Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math. Biosci. 217(1), 53–63 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sanga, S., Frieboes, H.B., Zheng, X., Gatenby, R., Bearer, E.L., Cristini, V.: Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. NeuroImage 37(Suppl 1), S120–S134 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by National Institutes of Health (NIH) grant CA 113004. VC acknowledges the NIH for support through 1U54CA143837, 1U54CA143907, and 1U54CA149196, and the National Science Foundation (NSF) for support under grant DMS-0818104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z., Cristini, V. (2013). Integration of Molecular Signaling into Multiscale Modeling of Cancer. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_151

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_151

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics