Skip to main content

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 14))

Abstract

In this chapter we will describe the latest developments in the area of lymphatic modelling. The lymphatic system is one of the key elements of the human circulation, serving the dual functions of draining interstitial fluid and returning this to the general blood circulation, together with processing this lymph fluid which is a key component of the body’s immune response system. Compared to the main cardiovascular system however, remarkably little modelling has been attempted. At the same time, the distribution of pumping activity (contractile lymphangions coupled with simple valves) throughout the system, passive primary lymphatics and complex lymph nodes combining to form an active network, makes the system a prime candidate for multiscale modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arkill, K.P., Moger, J., Winlove, C.P.: The structure and mechanical properties of collecting lymphatic vessels: an investigation using multimodal nonlinear microscopy. J. Anat. 216, 547–555 (2010)

    Article  Google Scholar 

  2. Baldazzi, V., Paci, P., Bernaschi, M., Castiglione, F.: Modelling lymphocyte homing and encounters in lymph nodes. BMC Bioinform. 10, 387–398 (2009)

    Article  Google Scholar 

  3. Bergel, D.H.: The static elastic properties of the arterial wall. J. Physiol. 156, 445–457 (1961)

    Google Scholar 

  4. Berk, D.A., Swartz, M.A., Leu, A.J., Jain, R.K.: Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am. J. Physiol. Heart Circ. Physiol. 270, H330–H337 (1996)

    Google Scholar 

  5. Bertram, C.D., Macaskill, C., Moore, J.E.: Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. 133, 011008-1–011008-10 (2011)

    Google Scholar 

  6. Boardman, K.C., Swartz, M.A.: Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003)

    Article  Google Scholar 

  7. Cassella, M., Skobe, M.: Lymphatic vessel activation in cancer. Ann. N. Y. Acad. Sci. 979, 120–130 (2002)

    Article  Google Scholar 

  8. Collins, T.P., Tabor, G.R., Young, P.G.: A computational fluid dynamics study of inspiratory flow in orotracheal geometries. Med. Biol. Eng. Comput. 45(9), 829–836 (2007)

    Article  Google Scholar 

  9. Drake, R.E., Allen, S.J., Katz, J., Gabel, J.C., Laine, G.A.: Equivalent circuit technique for lymph flow studies. Am. J. Physiol. Heart Circ. Physiol. 251, H1090–H1094 (1986)

    Google Scholar 

  10. Friedman, A., Lolas, G.: Analysis of a mathematical model of tumor lymphangiogeneis. Math. Models Meth. Appl. Sci. 15, 95–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fung, Y.C.: Biomechanics: Circulation. 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  12. Galie, P., Spilker, R.L.: A two-dimensional computational model of lymph transport across primary lymphatic valves. J. Biomech. Eng. 131, 1297–1307 (2009)

    Article  Google Scholar 

  13. Gnepp, D.R.: Lymphatics. In: Staub, N.C., Taylor, A.E. (eds) Edema, pp. 263–298. Raven Press, New York (1984)

    Google Scholar 

  14. Gnepp, D.R., Green, F.H.: Scanning electron microscopy of collecting lymphatic vessels and their comparison to arteries and veins. Scan. Electron Microsc. 3, 756–762 (1979)

    Google Scholar 

  15. Gnepp, D.R., Green, F.H.Y.: Scanning electron-microscopic study of canine lymphatic vessels. Lymphology 13(2), 91–99 (1980)

    Google Scholar 

  16. Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Ann. Rev. Fluid Mech. 36, 121–147 (2004)

    Article  MathSciNet  Google Scholar 

  17. Guo, Z., Sloot, P.M.A., Tay, J.C.: A hybrid agent-based approach for modeling microbiological systems. J. Theor. Biol. 255, 163–175 (2008)

    Article  MathSciNet  Google Scholar 

  18. Hajjami, H.M.-E., Petrova, T.V.: Developmental and pathological lymphangiogenesis: from models to human disease. Histochem. Cell Biol. 130, 1063–1078 (2008)

    Article  Google Scholar 

  19. Jain, R.K.: Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168 (2001)

    Article  Google Scholar 

  20. Jussila, L., Alitalo, K.: Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673–700 (2002)

    Google Scholar 

  21. Lambert, M.W., Benoit, J.N.: Mathematical model of intestinal lymph flow and lymphatic pumping. FASEB J. 6(5), A2078 (1992)

    Google Scholar 

  22. Lauweryns, J.M.: Stereomicroscopic funnel-like architecture of pulmonary lymphatic valves. Lymphology 4(4), 125–132 (1971)

    Google Scholar 

  23. Leak, L.V.: Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc. Res. 2, 361–391 (1970)

    Article  Google Scholar 

  24. Li, B., Silver, I., Szalai, J. P., Johnson, M. G.: Pressure–volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia. Microvasc. Res. 56, 127–138 (1998)

    Article  Google Scholar 

  25. Macdonald, A., Tabor, G., Winlove, C.P., Arkill, K., McHale, N.: Computational and experimental analysis of lymphatic valves. J. Biomech. 39(Suppliment 1), S295 (2006)

    Google Scholar 

  26. Macdonald, A., Tabor, G., Winlove, P., Arkill, K., McHale, N.: The fluid dynamics of lymphatic vessels. Poster presentation at Cardiovascular Haemodynamics and Modelling, 25th–27th September 2005, Edinburgh (2005)

    Google Scholar 

  27. Macdonald, A.J.: The fluid dynamics of lymphatic vessels. PhD thesis, University of Exeter (2007)

    Google Scholar 

  28. Macdonald, A.J., Arkill, K.P., Tabor, G.R., McHale, N.G., Winlove, C.P.: Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am. J. Physiol. Heart Circ. Physiol. 295, H305–H313 (2008)

    Article  Google Scholar 

  29. Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluids Struct. 20, 817–835 (2005)

    Article  Google Scholar 

  30. McHale, N.G., Roddie, I.C.: The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 261, 255–269 (1976)

    Google Scholar 

  31. Mendoza, E., Schmid-Schönbein, G.W.: A model for mechanics of primary lymphatic valves. J. Biomech. Eng. 125:407–414 (2003)

    Google Scholar 

  32. Mirski, H.P., Miller, M.J., Linderman, J.J., Kirschner, D.E.: Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J. Theor. Biol. 287, 160–170 (2011)

    Article  Google Scholar 

  33. Murray, C.D.: The physiological principle of minimum work: 1. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12(3), 207–214 (1926)

    Article  Google Scholar 

  34. Quick, C.M., Ngo, B.L., Venugopal, A.M., Stewart, R.H.: Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow. Am. J. Physiol. Heart Circ. Physiol. 296, H662–H668 (2009)

    Article  Google Scholar 

  35. Quick, C.M., Venugopal, A.M., Gashev, A.A., Zawieja, D.C., Stewart, R.H.: Intrinsic pump-conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1510–R1518 (2007)

    Article  Google Scholar 

  36. Rahbar, E., Moore, J.E.: A model of a radially expanding and contracting lymphangeon. J. Biomech. 44, 1001–1007 (2011)

    Article  Google Scholar 

  37. Reddy, N.P., Krouskop, T.A., Newell, P.H.: Biomechanics of a lymphatic vessel. Blood Vessels 12, 261–278 (1975)

    Google Scholar 

  38. Reddy, N.P., Krouskop, T.A., Newell, P.H.: A computer model of the lymphatic system. Comp. Biol. Med. 7, 181–197 (1977)

    Article  Google Scholar 

  39. Roose, T., Fowler, A.C.: Network development in biological gels: role in lymphatic vessel development. Bull. Math. Biol. 70(6), 1772–1789 (2008)

    Google Scholar 

  40. Roose, T., Swartz, M.A.: Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45, 107–115 (2012)

    Article  Google Scholar 

  41. Schmid-Schönbein, G.: The second valve system in lymphatics. Lymphat. Res. Biol. 1, 25–29 (2003)

    Article  Google Scholar 

  42. Schmid-Schönbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70(4), 987–1028 (1990)

    Google Scholar 

  43. Schmid-Schonbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70, 987–1026 (1990)

    Google Scholar 

  44. Sherwin, S.J., Franke, V., Peiró, J., Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003)

    Article  MATH  Google Scholar 

  45. Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. OnLine 10, 33 (2011)

    Article  Google Scholar 

  46. Shim, E.B., Kamm, R.D.: Numerical simulation of steady flow in a compliant tube or channel with tapered wall thickness. J. Fluids Struct. 16(8), 1009–1027 (2002)

    Article  Google Scholar 

  47. Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., Detmar, M.: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7(2), 192–198 (2001)

    Article  Google Scholar 

  48. Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E., Alitalo, K.: Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583 (2002)

    Google Scholar 

  49. Suga, H., Sagawa, K.: Mathematical interrelationship between instantaneous ventricular pressure–volume ratio and myocardial force–velocity relation. Ann. Biomed. Eng. 1, 160–181 (1972)

    Article  Google Scholar 

  50. Suga, H., Sagawa, K.: Instantaneous pressure–volume relations and their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–126 (1974)

    Article  Google Scholar 

  51. Suga, H., Sagawa, K., Shoukas, A.A.: Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32, 314–322 (1973)

    Article  Google Scholar 

  52. Swartz, M.A., Fleury, M.E.: The physiology of the lymph system. Ann. Rev. Biomed. Eng. 9, 229–256 (2007)

    Article  Google Scholar 

  53. Swartz, M.A., Kaipainen, A., Netti, P.A., Boucher, Y., Grodzinsky, A.J., Jain, R.K.: Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J. Biomech. 32, 1297–1307 (1999)

    Article  Google Scholar 

  54. Trzewik, J., Mallipattu, S.K., Artmann, G.M., Delano, F.A., Schmid-Schönbein, G.W.: Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001)

    Google Scholar 

  55. Venugopal, A.M., Quick, C.M., Laine, G.A., Stewart, R.H.: Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph. Am. J. Physiol. Heart Circ. Physiol. 296, H303–H309 (2009)

    Google Scholar 

  56. Venugopal, A.M., Stewart, R.H., Laine, G.A., Dongaonkar, R.M., Quick, C.M.: Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 293, H1183–H1189 (2007)

    Article  Google Scholar 

  57. Venugopal, A.M., Stewart, R.H., Laine, G.A., Quick, C.M.: Nonlinear lymphangion pressure–volume relationship minimizes edema. Am. J. Physiol. Heart Circ. Physiol. 299, H876–H882 (2010)

    Article  Google Scholar 

  58. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object orientated techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  59. Young, P.G., Beresford-West, T.B.H., Coward, S.R.L., Notarberardino, B., Walker, B., Abdul-Aziz, A.: An efficient approach to converting 3D image data into highly accurate computational models. Phil. Trans. R. Soc. A 366, 3155–3173 (2008)

    Article  MathSciNet  Google Scholar 

  60. Zawieja, D.C.: Contractile physiology of lymphatics. Lymphat. Res. Biol. 7(2), 87–96 (2009)

    Article  Google Scholar 

  61. Zweifach, B.W., Prather, J.W.: Micromanipulation of pressure in terminal lymphatics in the mesentery. Am. J. Physiol. 288(5), 1326–1331 (1975)

    Google Scholar 

Download references

Acknowledgments

Tiina Roose acknowledges the award of a Royal Society University Research Fellowship to fund her research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiina Roose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roose, T., Tabor, G. (2013). Multiscale Modelling of Lymphatic Drainage. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_148

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_148

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics