Skip to main content

Application of Neural Network and Finite Element Method for Multiscale Prediction of Bone Fatigue Crack Growth in Cancellous Bone

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 14))

Abstract

Fatigue damage in bone in the form of microcracks results from the repetitive loading of daily activities. It is well known that the resistance of bone at the organ level to fatigue fracture is a function of its resistance to the initiation and propagation of local microcracks at a mesoscopic scale which can lead to macrocrack growth at the organ level. Multiscale investigation of the relationship between the effect of the fatigue microcrack growth at microscopic scales and the whole bone behaviour is a subject of great interest in the research field of the biomechanics of human bone. Several finite element models (FE) have been developed in recent years in order to provide better insight and description regarding bone fatigue microcrack growth. Despite the progress in this field, there is still a lack of models integrating multiscale approaches to assess the accumulation of apparent fatigue microcracks in relation with trabecular architecture into practical FE simulations. In this chapter, a trabecular bone multiscale model based on FE simulation and neural network (NN) computation is presented to simulate the accumulation of trabecular bone crack density and crack length at a given trabecular bone site during cyclic loading. The FE calculation is performed at macroscopic level and a trained NN incorporated into a FE code is employed as a numerical device to perform the local mesoscopic computation (the behaviour law needed to compute the outputs at mesoscale is substituted by the trained NN). The input data for the NN are some trabecular morphological and material factors, the applied stress and cycle frequency. The output data are the average crack density and length computed at a given trabecular bone site.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K.: Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40, 1745–1753 (2007)

    Article  Google Scholar 

  2. Bowman, S.M., Guo, X.E., Cheng, D.W., Keaveny, T.M., Gibson, L.J., Hayes, W.C., McMahon, T.A.: Creep contributes to the fatigue behaviour of bovine trabecular bone. J. Biomech. Eng. 120, 647–654 (1998)

    Article  Google Scholar 

  3. Bugmann, G.: Normalized radial basis function networks. Neurocomput, Special Issue Radial Basis Func. Netw. 20, 97–110 (1998)

    Google Scholar 

  4. Burr, D.B.: Remodeling and the repair of fatigue damage, Calcified Tissue Int 53(Suppl 1), S75–S81 (1993)

    Google Scholar 

  5. Carter, D.R., Fyhrie, D.P., Whalen, R.T.: Trabecular bone density and loading history: regulation of tissue biology by mechanical energy. J. Biomech. 20, 785–795 (1987)

    Article  Google Scholar 

  6. Chaboche, J.L.: Continuum damage mechanics a tool to describe phenomena before crack initiation. Nucl. Eng. Des. 64, 233–247 (1981)

    Article  Google Scholar 

  7. Choi, K., Goldstein, S.A.: A comparison of the fatigue behaviour of human trabecular and cortical bone tissue. J. Biomech. 25(12), 1371–1381 (1992)

    Article  Google Scholar 

  8. Cowin, S.C.: Mechanosensation and fluid transport in living bone. J. Musculoskel. Neuron. Interact. 2(3), 256–260 (2002)

    Google Scholar 

  9. Dendorfer, S., Maier, H.J., Hammer, J.: Anisotropy of the fatigue behaviour of cancellous bone. J. Biomech. 41(3), 636–641 (2008)

    Article  Google Scholar 

  10. Dendorfer, S., Maier, H.J., Hammer, J.: Fatigue damage in cancellous bone: an experimenytal approach from continuum to micro scale. J. Mech. Behav. Biomed. Mater. 2, 113–119 (2009)

    Article  Google Scholar 

  11. Dragomir-Daescu, D., Op Den Buijs, J., McEeligot, S., Dai, Y., Entwistle, R.C., Salas, C., Melton III, J., Bennet, E., Khosla, S., Amin, S.: Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39(2), 742–755 (2011)

    Article  Google Scholar 

  12. Faulkner, K.G., Cummings, S.R., Black, D., Palermo, L., Gluer, C.C., Genant, H.K.: Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J. Bone Miner. Res. 8, 1211–1217 (1993)

    Article  Google Scholar 

  13. Faulkner, K.G., Cummings, S.R., Black, D., Palermo, L., Gluer, C.C., Genant, H.K.: Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J. Bone Miner. Res. 21, 101–108 (1993)

    Google Scholar 

  14. Fazzalari, N.L., Kuliwaba, J.S., Forwood, M.R.: Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Bone 31(6), 697–702 (2002)

    Article  Google Scholar 

  15. Ghanbari, J., Naghdabadi, R.: Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. J. Biomech. 42(10), 1560–1565 (2009)

    Article  Google Scholar 

  16. Haddock, S.M., Yeh, O.C., Mummaneni, P.V., Rosenberg, W.S., Keaveny, T.M.: Similarity in the fatigue behaviour of trabecular bone across site and species. J. Biomech. 37, 181–187 (2004)

    Article  Google Scholar 

  17. Hambli, R.: Statistical damage analysis of extrusion processes using finite element method and neural networks simulation. Finite Elem. Anal. Des. 45(10), 640–649 (2009)

    Article  Google Scholar 

  18. Hambli, R.: Application of neural networks and finite element computation for multiscale simulation of bone remodeling. J. Biomech. Eng. 132(11), 114502 (2010)

    Article  Google Scholar 

  19. Hambli, R.: Numerical procedure for multiscale bone adaptation prediction based on neural networks and finite element simulation. Finite Elem. Anal. Design 47(7), 835–842 (2011)

    Article  Google Scholar 

  20. Hambli, R.: Apparent damage accumulation in cancellous bone using neural networks. J. Mech. Behav. Biomed. Mater. 4(6), 868–878 (2011)

    Article  Google Scholar 

  21. Hambli, R., Chamekh, A., Bel Hadj Salah, H.: Real-time deformation of structure using finite element and neural networks in virtual reality applications. Finite Elem. Anal. Des. 42(11), 985–991 (2006)

    Article  Google Scholar 

  22. Hambli, R., Soulat, D., Gasser, A., Benhamou, C.L.: Strain–damage coupled algorithm for cancellous bone mechano-regulation with spatial function influence, Vol. 198. Comput. Methods Appl. Mech. Eng. 33–36(1), 2673–2682 (2009)

    Article  Google Scholar 

  23. Hambli, R., Katerchi, K., Benhamou, C.L.: Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model. Mechanobiol. 10(1), 133–145 (2011)

    Article  Google Scholar 

  24. Harrigan, T.P., Jasty, M., Mann, R.W., Harris, W.H.: Limitations of the continuum assumption in cancellous bone. J. Biomech. 21, 269–275 (1988)

    Article  Google Scholar 

  25. Hernandez, C.J., Beaupre, G.S., Keller, T.S., Carter, D.R.: The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29, 74–78 (2001)

    Article  Google Scholar 

  26. Hernandez, C.J., Gupta, A., Keaveny, T.M.: A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J. Bone Miner. Res. 21(8), 1248–1255 (2006)

    Article  Google Scholar 

  27. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)

    Article  Google Scholar 

  28. Hurtado, J.E.: Analysis of one-dimensional stochastic finite elements using neural networks. Probab. Eng. Mech. 17(1), 35–44 (2002)

    Article  Google Scholar 

  29. Jenkins, W.M.: An introduction to neural computing for the structural engineer. Struct. Eng. 75(3), 38–41 (1997)

    Google Scholar 

  30. Karim, L., Vashishth, D.: Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone. J. Orthop. Res. 29(11), 1739–1744 (2011)

    Article  Google Scholar 

  31. Keyak, J.H., Rossi, S.A., Jones, K.A., Les, C.M., Skinner, H.B.: Prediction of fracture location in the proximal femur using finite element models. Med. Eng. Phys. 23, 657–664 (2001)

    Article  Google Scholar 

  32. Kosmopoulos, V., Schizas, C., Keller, T.S.: Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue. J. Biomech. 41, 515–522 (2008)

    Article  Google Scholar 

  33. Lefik, M., Boso, D.P., Schrefler, B.A.: Artificial neural networks in numerical modelling of composites. Comput. Methods Appl. Mech. Eng. 198, 1785–1804 (2009)

    Article  MATH  Google Scholar 

  34. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)

    Article  Google Scholar 

  35. Martin, R.B.: Porosity and specific surface of bone. Crit. Rev. Biomed. Eng. 10, 179–222 (1984)

    Google Scholar 

  36. Martin, R.B., Burr, D.R., Sharkey, N.A.: Skeletal tissue mechanics. Springer, New York (1998)

    Google Scholar 

  37. Morgan, E.F., Keaveny, T.M.: Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 34, 569–577 (2001)

    Article  Google Scholar 

  38. Morgan, E.F., Yeh, O.C., Keaveny, T.M.: Damage in trabecular bone at small strains. Eur. J. Morphol. 42(1–2), 13–21 (2005)

    Article  Google Scholar 

  39. Nagaraja, S., Couse, T.L., Guldberg, R.E.: Trabecular bone microdamage and microstructural stresses under uniaxial compression. J. Biomech. 38(4), 707–716 (2005)

    Article  Google Scholar 

  40. Nicolella, D.P., Nicholls, A.E., Lankford, J.: Micromechanics of creep in cortical bone. Trans. Orthop. Res. Soc. 23, 137 (1998)

    Google Scholar 

  41. O’Brien, F.J., Taylor, D., Clive Lee, T.: Microcrack accumulation at different intervals during fatigue testing of compact bone. J. Biomech. 36, 973–980 (2003)

    Article  Google Scholar 

  42. Pattin, C.A., Caler, W.E., Carter, D.R.: Cyclic mechanical fatigue property degradation during fatigue loading of cortical bone. J. Biomech. 29(1), 69–79 (1996)

    Article  Google Scholar 

  43. Prendergast, P.J., Taylor, D.: Prediction of bone adaptation using damage accumulation. J. Biomech. 27(8), 1067–1076 (1994)

    Article  Google Scholar 

  44. Rafiq, M.Y., Bugmann, G., Easterbrook, D.J.: Neural network design for engineering applications. Comput. Struct. 79(17), 1541–1552 (2001)

    Article  Google Scholar 

  45. Rapillard, L., Charlebois, M., Zysset, P.K.: Compressive fatigue behaviour of human vertebral trabecular bone. J. Biomech. 39, 2133–2139 (2006)

    Article  Google Scholar 

  46. Taylor, D., Lee, T.C.: A crack growth model for the simulation of fatigue in bone. Int. J. Fatigue 2, 387–395 (2003)

    Article  Google Scholar 

  47. Taylor, M., Cotton, J., Zioupos, P.: Finite element simulation of the fatigue behaviour of cancellous bone. Meccanica 37, 419–429 (2002)

    Article  MATH  Google Scholar 

  48. Unger, J.F., Konke, C.: Coupling of scales in multiscale simulation using neural networks. Comput. Struct. 86(21–22), 1994–2003 (2008)

    Article  Google Scholar 

  49. Viceconti, M., Taddei, F., Jan, S.V.S., Leardini, A., Cristofolini, A., Stea, S., Baruffaldi, F., Baleani, M.: Multiscale modelling of the skeleton for the prediction of the risk of fracture. Clin. Biomech. 23, 845–852 (2008)

    Article  Google Scholar 

  50. Wang, X., Masse, D.B., Huijie, L., Hess, K.P., Ross, R.D., Roeder, R.K., Niebur, G.L.: Detection of trabecular bone microdamage by micro-computed tomography. J. Biomech. 40(15), 3397–3403 (2007)

    Article  Google Scholar 

  51. Waszczyszyn, Z., Ziemianski, L.: Neural network in mechanics of structures and materials—new results and prospects of applications. Comput. Struct. 79, 2261–2267 (2001)

    Article  Google Scholar 

  52. Weiner, S., Traub, W.: Bone structure: from ångstroms to microns. FASEB J. 6, 879–885 (1992)

    Google Scholar 

  53. Yagawa, G., Okuda, H.: Neural networks in computational mechanics. Arch. Comput. Methods Eng. 3–4, 435–512 (1996)

    Article  Google Scholar 

  54. Zioupos, P., Tong Wang, X., Currey, J.D.: Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech. 29(8), 989–1002 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency (ANR) through TecSan program (Project MoDos, no. ANR-09-TECS-018). The authors are grateful to Dr Loulou H. for providing the micro-CT trabecular bone meshes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Hambli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hambli, R., Hattab, N. (2013). Application of Neural Network and Finite Element Method for Multiscale Prediction of Bone Fatigue Crack Growth in Cancellous Bone. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_146

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_146

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics