Skip to main content

In Vivo, In Vitro, In Silico: Computational Tools for Product and Process Design in Tissue Engineering

  • Chapter
  • First Online:
Computational Modeling in Tissue Engineering

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 10))

  • 2243 Accesses

Abstract

This chapter aims to provide an introduction to how engineering tools in general and computational models in particular can contribute to advancing the tissue engineering (TE) field. After a description of the current state of the art of TE, the developmental engineering paradigm is briefly discussed. Subsequently an overview is provided of different model categories that focus on different aspects of TE. These categories consists of the models that focus on either the TE product, the TE process or the in vivo results obtained after implantation. Generally, in all these models the aim is firstly to understand the biological process at hand and secondly to design strategies in silico to enhance the desired in vitro or in vivo behaviour. Finally, the need for quantification and parameter determination is discussed along with the computational tools and models that can be used to design the thereto required experiments in the most intelligent way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer, R., Vacanti, J.P.: Tissue engineering. Science 260, 920–926 (1993)

    Article  Google Scholar 

  2. Meijer, G., de Bruijn, J.D., Koole, R., van Blitterswijk, C.A.: Cell-based bone tissue engineering. PLoS Med. 4, e9 (2007)

    Article  Google Scholar 

  3. Archer, R., Williams, D.: Why tissue engineering needs process engineering. Nat. Biotechnol. 23, 1353–1355 (2005)

    Article  Google Scholar 

  4. Ingber, D.E., Mow, V.C., Butler, D., Niklason, L., Huard, J., Mao, J., Yannas, I., Kaplan, D., Vunjak-Novakovic, G.: Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 12, 3265–3283 (2006)

    Article  Google Scholar 

  5. Lenas, P., Moos, M., Luyten, F.P.: Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng. Part B Rev. 15(4), 395–422 (2009)

    Article  Google Scholar 

  6. Lenas, P., Moos, M., Luyten, F.P.: Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng. Part B Rev. 15(4), 381–394 (2009)

    Article  Google Scholar 

  7. Lenas, P., Luyten, F.: An emerging paradigm in tissue engineering: from chemical engineering to developmental engineering for bioartificial tissue formation through a series of unit operations that simulate the in vivo successive developmental stages. Ind. Eng. Chem. Res. 50(2), 482–522 (2011)

    Article  Google Scholar 

  8. Lenas, P., Luyten, F.P., Doblare, M., Nicodemou-Lena, E., Lanzara, A.E.: Modularity in developmental biology and artificial organs: a missing concept in tissue engineering. Artif. Organs 35(6), 656–662 (2001)

    Article  Google Scholar 

  9. Kronenberg, H.M.: PTHrP and skeletal development. Ann. N. Y. Acad. Sci. 1068, 1–13 (2006)

    Article  Google Scholar 

  10. Kronenberg, H.M.: Developmental regulation of the growth plate. Nature 423, 332–336 (2003)

    Article  Google Scholar 

  11. Solomon, L.A., Bérubé, N.G., Beier, F.: Transcriptional regulators of chondrocyte hypertrophy. Birth Defects Res. C Embryo Today 84, 123–130 (2008)

    Article  Google Scholar 

  12. Burdan, F., Szumi, J., Korobowicz, A., Farooquee, R., Patel, S., Patel, A., Dave, A., Szumi, M., Solecki, M., Klepacz, R., Dudka, J.: Morphology and physiology of the epiphyseal growth plate. Folia Histochem. Cytobiol. 47, 5–16 (2009)

    Article  Google Scholar 

  13. Luyten, F.P., Dell’Accio, F., De Bari, C.: Skeletal tissue engineering: opportunities and challenges. Best Pract. Res. Clin. Rheumatol. 15(5), 759–770 (2001)

    Article  Google Scholar 

  14. Shapiro, F.: Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cell Mater. 15, 53–76 (2008)

    Google Scholar 

  15. Reddi, A.H.: Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic materials. Tissue Eng. 6(4), 351–359 (2000)

    Article  Google Scholar 

  16. Hunziker, E.B.: Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10(6), 432–463 (2002)

    Google Scholar 

  17. Ferguson, C., Alpern, E., Miclau, T., Helms, J.A.: Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev. 87(1–2), 57–66 (1999)

    Article  Google Scholar 

  18. Alsberg, E., Anderson, K.W., Albeiruti, A., Rowley, J.A., Mooney, D.J.: Engineering growing tissues. Proc. Natl. Acad. Sci. U S A 99, 12025–12030 (2002)

    Article  Google Scholar 

  19. Jukes, J.M., Both, S.K., Leusink, A., Sterk, L.M., van Blitterswijk, C.A., de Boer, J.: Endochondral bone tissue engineering using embryonic stem cells. Proc. Natl. Acad. Sci. U S A 105(19), 6840–6845 (2008)

    Article  Google Scholar 

  20. Scotti, C., Tonnarelli, B., Papadimitropoulos, A., Scherberich, A., Schaeren, S., Schauerte, A., Lopez-Rios, J., Zeller, R., Barbero, A., Martin, I.: Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. U S A 107(16), 7251–7256 (2010)

    Article  Google Scholar 

  21. Weiss, H.E., Roberts, S.J., Schrooten, J., Luyten, F.P.: A semi-autonomous model of endochondral ossification for developmental tissue engineering. Tissue Eng. Part A (2012). doi:10.1089/ten.tea.2011.0602

  22. Martin, I., Smith, T., Wendt, D.: Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol. 27, 495–502 (2009)

    Article  Google Scholar 

  23. Roberts, S.J., Geris, L., Kerckhofs, G., Desmet, E., Schrooten, J., Luyten, F.P.: The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32(19), 4393–4405 (2011)

    Article  Google Scholar 

  24. Kerkhofs, J., Roberts, S.J., Luyten, F.P., Van Oosterwyck, H., Geris, L.: Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype. PLoS ONE 7(4), e34729 (2012)

    Article  Google Scholar 

  25. Geris, L., Van Liedekerke, P., Smeets, B., Tijskens, E., Ramon, H.: A cell based modelling framework for skeletal tissue engineering applications. J. Biomech. 43(5), 887–892 (2010)

    Article  Google Scholar 

  26. Peiffer, V., Gerisch, A., Vandepitte, D., Van Oosterwyck, H., Geris, L.: A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech. Model. Mechanobiol. 10(3), 383–395 (2011)

    Article  Google Scholar 

  27. Carlier, A., Chai, Y.C., Moesen, M., Theys, T., Schrooten, J., Van Oosterwyck, H., Geris, L.: Designing optimal calcium phosphate scaffold-cell combinations using an integrative model based approach. Acta Biomater. 7(10), 3573–3585 (2011)

    Article  Google Scholar 

  28. Geris, L., Ashbourn, J.M.A., Clarke, T.: Continuum-level modelling of cellular adhesion and matrix production in aggregates. Comput. Method Biomech. Biomed. Eng. 14(5), 403–410 (2011)

    Article  Google Scholar 

  29. Geris, L., Gerisch, A., Vander Sloten, J., Weiner, R., Van Oosterwyck, H.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251(1), 137–158 (2008)

    Article  Google Scholar 

  30. Geris, L., Vander Sloten, J., Van Oosterwyck, H.: Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech. Model. Mechanobiol. 9(6), 713–724 (2010)

    Article  Google Scholar 

  31. Israelowitz, M., Rizvi, S.W.H., Weyand, B., Gille, C., von Schroeder, H.P.: Protein modeling and surface folding by limiting the degrees of freedom (2012). doi:10.1007/8415_2012_141

  32. Nekouzadeh, A., Genin, G.M.: Adaptive quasi-linear viscoelastic modeling (2012). doi:10.1007/8415_2012_142

  33. Lambrechts, D., Schrooten, J., Van de Putte, T., Van Oosterwyck, H.: Computational modeling of mass transport and its relation to cell behavior in tissue engineering constructs (2012). doi:10.1007/8415_2012_139

  34. Olivares, A.L., Lacroix, D.: Computational methods in the modeling of scaffolds for tissue engineering (2012). doi:10.1007/8415_2012_136

  35. Song, M.J., Dean, D., Knothe Tate, M.L.: Computational modeling of tissue engineering scaffolds as delivery devices for mechanical and mechanically modulated signals (2012). doi:10.1007/8415_2012_138

  36. Cincotti, A., Fadda, S.: Modeling the cryopreservation process of a suspension of cells: the effect of a size distributed cell population (2012). doi:10.1007/8415_2012_134

  37. Galle, J., Hoffmann, M., Krinner, A.: Mesenchymal stem cell heterogeneity and ageing in vitro—a model approach (2012). doi:10.1007/8415_2012_116

  38. Sasaki, H., Matsuoka, F., Yamamoto, W., Kojima, K., Honda, H., Kato, R.: Image-based cell quality assessment: modeling of cell morphology and quality for clinical cell therapy (2012). doi:10.1007/8415_2012_132

  39. Geris, L., Reed, A.A., Vander Sloten, J., Simpson, A.H., Van Oosterwyck, H.: Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput. Biol. 6(9), e1000915 (2010)

    Article  Google Scholar 

  40. Karim, M.N., Hodge, D., Simon, L.: Data-based modeling and analysis of bioprocesses: some real experiences. Biotechnol. Prog. 19(5), 1591–1605 (2003)

    Article  Google Scholar 

  41. Wendt, D., Riboldi, S.A., Cioffi, M., Martin, I.: Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. Adv. Mater. 21(32–33), 3352–3367 (2009)

    Article  Google Scholar 

  42. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer-Verlag, London (1999)

    Book  Google Scholar 

  43. Young, P.: Data-based mechanistic modeling, generalised sensitivity and dominant mode analysis. Comput. Phys. Commun. 117, 113–129 (1999)

    Article  Google Scholar 

  44. Moore, B.C.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MATH  Google Scholar 

  45. Huang, Z., Chu, Y., Hahn, J.: Model simplification procedure for signal transduction pathway models: an application to IL-6 signaling. Chem. Eng. Sci. 65(6), 1964–1975 (2010)

    Article  Google Scholar 

  46. O’Dea, R.D., Byrne, H.M., Waters, S.L.: Continuum mathematical modelling of in vitro tissue engineering: a review (2012). doi:10.1007/8415_2012_140

  47. Raimondi, M.T., Causin, P., Lagana, M., Zunino, P., Sacco, R.: Multiphysics computational modeling in cartilage tissue engineering (2012). doi:10.1007/8415_2011_112

  48. Bjork, J.W., Safonov, A.M., Tranquillo, R.T.: Oxygen transport in bioreactors for engineered vascular tissues (2012). doi:10.1007/8415_2012_133

  49. Watton, P.N., Huang, H., Ventikos, Y.: Multi-scale modelling of vascular disease: abdominal aortic aneurysm evolution (2012). doi:10.1007/8415_2012_143

  50. Geris, L., Vander Sloten, J., Van Oosterwyck, H.: In silico biology of bone modeling and remodeling—regeneration. Philos. Trans. R. Soc. A 367(1895), 2031–2053 (2009)

    Article  Google Scholar 

  51. Nagel, T., Kelly, D.J.: Computational mechanobiology in cartilage and bone tissue engineering: from cell phenotype to tissue structure (2012). doi:10.1007/8415_2012_131

  52. Reina-Roma, E., Valero, C., Borau, C., Rey, R., Javierre, E., Gomez-Benito, M.J., Dominguez, J., Garcia-Aznar, J.M.: Mechanobiological modelling of angiogenesis impact on tissue engineering and bone regeneration (2012). doi:10.1007/8415_2011_111

  53. Lemon, G., King, J.R., Macchiarini, P.: Mathematical modeling of regeneration of a tissue-engineered trachea (2012). doi:10.1007/8415_2012_145

  54. http://quantissue.eu/. Accessed 19 June 2012

  55. http://en.wikipedia.org/wiki/Physiome. Accessed 19 June 2012

  56. http://ec.europa.eu/information_society/activities/health/research/fp7vph/index_en.htm. Accessed 19 June 2012

  57. Faratian, D., Goltsov, A., Lebedeva, G., Sorokin, A., Moodie, S., Mullen, P., Kay, C., Um, I.H., Langdon, S., Goryanin, I., Harrison, D.J.: Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res. 69(16), 6713–6720 (2009)

    Article  Google Scholar 

  58. Edelman, L.B., Eddy, J.A., Price, N.D.: In silico models of cancer. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(4), 438–459 (2010)

    Article  Google Scholar 

  59. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406(6792), 188–192 (2000)

    Article  Google Scholar 

  60. Von Dassow, G., Odell, G.M.: Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J. Exp. Zool. 294(3), 179–215 (2002)

    Article  Google Scholar 

  61. Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.Z., Barkai, N.: Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419(6904), 304–308 (2002)

    Article  Google Scholar 

  62. Tsai, T.Y., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., Ferrell Jr, J.E.: Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321(5885), 126–129 (2008)

    Article  Google Scholar 

  63. Faller, D., Klingmuller, U., Timmer, J.: Simulation methods for optimal experimental design in systems biology. Simulation 79, 717–725 (2003)

    Article  Google Scholar 

  64. Zak, D.E., Gonye, G.E., Schwaber, J.S., Doyle III, F.J.: Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res. 13, 2396–2405 (2003)

    Article  Google Scholar 

  65. Gadkar, K.G., Varner, J., Doyle III, F.J.: Model identification of signal transduction networks from data using a state regulator problem. IEEE Syst. Biol. 2, 17–30 (2005)

    Article  Google Scholar 

  66. Geris, L., Gerisch, A., Maes, C., Van Oosterwyck, H., Carmeliet, G., Weiner, R., Vander Sloten, J.: Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results. Med. Biol. Eng. Comput. 44(4), 280–289 (2006)

    Article  Google Scholar 

  67. Isaksson, H., van Donkelaar, C.C., Huiskes, R., Yao, J., Ito, K.: Determining the most important cellular characteristics for fracture healing using design of experiments methods. J. Theor. Biol. 255(1), 26–39 (2009)

    Article  Google Scholar 

  68. Cumming, G., Fidler, F., Vaux, D.L.: Error bars in experimental biology. J. Cell Biol. 177, 7–11 (2007)

    Article  Google Scholar 

  69. Brown, K.S., Sethna, J.P.: Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E 68, 021904 (2003)

    Article  Google Scholar 

  70. Brown, K.S., Hill, C.C., Calero, G.A., Myers, C.R., Lee, K.H., et al.: The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys. Biol. 1, 184–195 (2004)

    Article  Google Scholar 

  71. Brodersen, R., Nielsen, F., Christiansen, J.C., Andersen, K.: Characterization of binding equilibrium data by a variety of fitted isotherms. Eur. J. Biochem. 169, 487–495 (1987)

    Article  Google Scholar 

  72. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3(10), 1871–1878 (2007)

    Article  MathSciNet  Google Scholar 

  73. Gutenkunst, R.N., Casey, F.P., Waterfall, J.J., Myers, C.R., Sethna, J.P.: Extracting falsifiable predictions from sloppy models. Ann. N. Y. Acad. Sci. 1115, 203–211 (2007)

    Article  Google Scholar 

  74. Ashbourn, J.M., Miller, J.J., Reumers, V., Baekelandt, V., Geris, L.: A mathematical model of adult subventricular neurogenesis. J. R. Soc. Interface (2012). doi:10.1098/rsif.2012.0193

  75. Daniels, B.C., Chen, Y.J., Sethna, J.P., Gutenkunst, R.N., Myers, C.R.: Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 19(4), 389–395 (2008)

    Article  Google Scholar 

  76. Casey, F.P., Baird, D., Feng, Q., Gutenkunst, R.N., Waterfall, J.J., et al.: Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. IET Syst. Biol. 1, 190–202 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges funding from the Special Research Fund of the University of Liège (FRS.D-10/20), the Belgian National Fund for Scientific Research (FNRS) grant FRFC 2.4564.12 and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement n°279100. The authors also gratefully acknowledges collaborators from the Biomechanics Research Group of the University of Liège and from Prometheus, the KU Leuven Research and Development Division of Skeletal Tissue Engineering (www.kuleuven.be/Prometheus) for their invaluable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liesbet Geris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geris, L. (2012). In Vivo, In Vitro, In Silico: Computational Tools for Product and Process Design in Tissue Engineering. In: Geris, L. (eds) Computational Modeling in Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_144

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_144

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32562-5

  • Online ISBN: 978-3-642-32563-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics