Advertisement

Protein Modelling and Surface Folding by Limiting the Degrees of Freedom

  • Meir Israelowitz
  • Birgit Weyand
  • Syed W. H. Rizvi
  • Christoph Gille
  • Herbert P. von Schroeder
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 10)

Abstract

One aspect of tissue engineering represents modelling of the extracellular matrix of connective tissue as the fiber network arrangement of the matrix determines its tensile strength. In order to define the correct position of the e.g. collagen in a structure, an optimized tertiary structure must be characterized. Existing approaches of protein models consider random packing of rigid spheres. We propose an alternative strategy to model protein structure by focusing on the folding. Our model considers (a) segments of amino-acid peptides or beads, (b) hydrogen bond distances, and (c) the distance geometry as functional components rather than minimizing distances between the centers of atoms. We reduced the molecular volume by using concepts from low dimensional topology, such as braids and surfaces, via differential geometry. A braid group maintains the continuity of a sequence while the spatial minimization is performed, and guarantees the continuity during the process. We have applied this approach to different examples of known protein sequences using ab initio protocols of ProteoRubix Systems™. Sequence files of three different proteins types were tested and modeled by ProteoRubix™ and compared to models derived by other methods. ProteoRubix™ created near-identical models with minimal computational load. This model can be expanded to large, multi-molecular network structures.

Keywords

Support Vector Machine Root Mean Square Difference Braid Group Original File Back Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank: Isabella Verdinelli and Lauren Ernst for the discussions related to the model and Troy Wymore from the Pittsburgh Supercomputing Center for his suggestions in verifying the models and a special thanks to Dr. Alex Cohen from ProteoRubix Systems who developed the minimizer and for discussion and development of ProteoRubix™ software for the Geometry Modelling. Chris Holm for editing the manuscript.

References

  1. 1.
    Adams, C., Hildebrand, M., Weeks, J.: Hyperbolic invariants of knots and links. Trans. Amer. Math. Soc. 1, 1–56 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adams, J.F.: Vector fields on spheres. Ann. Math. 75, 603–632 (1962)zbMATHCrossRefGoogle Scholar
  3. 3.
    Andrew, C.D., Penel, S., Jones, G.R., Doig, A.J.: Stabilizing nonpolar/polar side-chain interactions in the α-helix. Proteins Struct. Funct. Genetics 45, 449–455 (2001)Google Scholar
  4. 4.
    Arge, E., Bruaset, A.M., Langtangen, H.P.: Modern Software tools for Scientific Computing. Birkhauser Press, Boston (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Baker, E.N., Hubbard, R.E.: Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 179, 97–177 (1984)CrossRefGoogle Scholar
  6. 6.
    Balakrishnan, R., Ramasubu, N., Varughese, K., Parthasathy, R.: Crystal structure of the cooper and nickel complexes of RNAase A: metal-induced interprotein interactions and identification of a novel cooper binding motif. Proc. Natl. Acad. Sci. U. S. A. 94, 9620–9625 (1997)CrossRefGoogle Scholar
  7. 7.
    Biegler, T.F., Mumenthaler, C., Wener, B.: Folding proteins by energy minimization and Montecarlo simulations with hydrophobic surface area potentials. J. Mol. Model. 1, 1–10 (1995)CrossRefGoogle Scholar
  8. 8.
    Birman, J.S.: Recent developments in Braid and Link theory. Math. Intell. 13, 52–60 (1991)Google Scholar
  9. 9.
    Blaney, J.M., Dixon, J.S.: Distance Geometry in Molecular Modelling. CRC Press, Boca Raton (1993)Google Scholar
  10. 10.
    Bonneau, R., Tsai, J., Ruczinski, I., Chivian, D., Rohl, C., Strauss, C.E., Baker, D.: Rosetta in CASPA 4: progress in ab initio protein structure prediction. Proteins 5, 119–126 (2001)CrossRefGoogle Scholar
  11. 11.
    Bondi, A.: van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)CrossRefGoogle Scholar
  12. 12.
    Bryngelson, J.D., Billing, E.M.: Interatomic interactions to protein structure. Rev. Comput. Chem. 5, 84 (1995)Google Scholar
  13. 13.
    Bussemaker, H.J., Thirumalia, D., Bhattacharjee, J.K.: Thermodynamic stability of folding protein against mutation. Phys. Rev. Let. 79, 3530–3533 (1997)CrossRefGoogle Scholar
  14. 14.
    Campbell, P.G., Cohen, A.P., Ernst, L.A., Ernsthausen, J., Farkas, D.L., Galbraith, W., Israelowitz, M.: US Patent Application. USPTO Patent Application Number 20030216867 (2003)Google Scholar
  15. 15.
    Carmo, M.P.: Differential Geometry of Curves and surfaces. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  16. 16.
    Case, D.A., Cheatham III, T.E., Darden, T., Gohlke, H., Luo, R., Merz Jr, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.: The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)CrossRefGoogle Scholar
  17. 17.
    Chen, J.M., Kung, C.E., Feairheller, S.H., Brown, E.M.: An energetic evaluation of a “Smith” collagen microfil model. J. Protein Chem. 10(5), 535–551 (1991)CrossRefGoogle Scholar
  18. 18.
    Cheatham III, T.E., Young, M.A.: Molecular dynamics simulation of nucleic acids: successes, limitations and promise. Biopolymers 56, 232–256 (2001)CrossRefGoogle Scholar
  19. 19.
    Choi, H.K., Laursen, R.A., Allen, K.N.: The 2.1 Å structure of a cysteine protease with proline specificity from ginger rhizome, Zingiber officinale. Biochemistry 38, 11624–11633 (1999)CrossRefGoogle Scholar
  20. 20.
    Connolly, M.L.: Computation of molecular volume. J. Am. Chem. Soc. 107, 1118–1124 (1985)Google Scholar
  21. 21.
    Connolly, M.L.: Adjoin volumes. J. Math. Chem. 15, 339–352 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Costantini, S., Colonna, G., Facchiano, A.M.: Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem. Biophys. Res. Commun. 342, 441–451 (2006)CrossRefGoogle Scholar
  23. 23.
    Cramer, C.J.: Essentials of computational chemistry: theories and models. Wiley, West Sussex (2004)Google Scholar
  24. 24.
    Das, A.K., Cohen, P.W., Barford, D.: The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J. 17, 1192–1199 (1998)CrossRefGoogle Scholar
  25. 25.
    DeLano, W.L.: The PyMOL molecular graphics system on World Wide Web (2002). http://www.pymol.org
  26. 26.
    Eaton, W.A., Munoz, V., Thompson, P.A., Henry, E.R., Hofrichter, J.: Kinetics and dynamics loops, α-helices, β-haipins, and fast-folding proteins. Acc. Chem. Res. 31, 745–753 (1998)CrossRefGoogle Scholar
  27. 27.
    Eğe, S.: Organic Chemistry, pp. 18–71. D.C. Heath and Company, Lexington (1984)Google Scholar
  28. 28.
    Fernandez, A., Sinanoglu, O.: Denaturation of proteins in methanol/water mixtures. Biophys. Chem. 21, 163–164 (1985)CrossRefGoogle Scholar
  29. 29.
    Frömmel, C., Gille, C., Goede, A., Gröpl, C., Hougardy, S., Nierhoff, T., Preissner, R., Thimm, M.: Accelerating screening of 3D protein data with a graph theoretical approach. Bioinformatics 19, 2442–2447 (2003)CrossRefGoogle Scholar
  30. 30.
    Garnier, J., Osguthorpe, D.J., Robson, B.: Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–12 (1978)Google Scholar
  31. 31.
    Garrett, R., Grisham, C.M.: Biochemistry, p. 150. Brooks/Cole, Belmont (2005)Google Scholar
  32. 32.
    Gibson, K.D., Scheraga, H.A.: An algorithm for packing multistrand polypeptide structures by energy minimization. J. Comput. Chem. 15, 1414–1428 (1994)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Gille, C., Lorenzen, S., Michalsky, E., Frömmel, C.: KISS for STRAP: user extensions for a protein alignment editor. Bioinformatics 19, 2489–2491 (2003)CrossRefGoogle Scholar
  34. 34.
    Gille, C.: Structural interpretation of mutations and SPNs using STRAP-NT. Protein Sci. 15, 208–210 (2006)CrossRefGoogle Scholar
  35. 35.
    Gong, H., Porter, L.L., Rose, G.: Counting peptide-water hydrogen bonds in unfolded proteins. Protein Sci. 574, 417–427 (2011)CrossRefGoogle Scholar
  36. 36.
    Havel, T.F.: An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. Mol. Biol. 56, 43–78 (1991)CrossRefGoogle Scholar
  37. 37.
    Hill, B.R., Raleigh, D.P., Lombardi, A., Degrado, W.F.: De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33, 745–754 (2000)Google Scholar
  38. 38.
    Hummer, G., Garde, S., García, A.E., Paulaitis, M.E., Pratt, L.R.: The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Natl. Acad. Sci. U. S. A. 95, 1522–1555 (1998)CrossRefGoogle Scholar
  39. 39.
    Hunt, A.J., Gittes, F., Howard, J.: The force exerted by a kinesin molecule against a viscous load. Biophys. J. 67, 766–781 (1994)CrossRefGoogle Scholar
  40. 40.
    Israelowitz, M., Rizvi, S.W.H., Kramer, J., von Schroeder, H.P.: Computational modelling of type I Collagen fibers to determine the extracellular matrix structure of connective tissues. Protein Eng. Des. Sel. 18, 329–335 (2005)CrossRefGoogle Scholar
  41. 41.
    Jacoby, S.L.S., Kowalik, J.S., Pizzo, J.T.: Interactive methods for nonlinear optimization problems. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  42. 42.
    Tang,C.J.K., Alexandrov, V.: Relaxed Monte Carlo linear solver. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Tan, C.J.K. (eds.) Lecture Notes in Computer Science, vol. 2073, p. 1289. Springer, Heidelberg (2001)Google Scholar
  43. 43.
    King, G., Brown, E.M., Chen, J.M.: Computer model of a bovine type I collagen microfribil. Protein Eng. 1, 43–49 (1996)CrossRefGoogle Scholar
  44. 44.
    Kuntz, I.D., Thomason, J.F., Oshiro, C.M.: Distance geometry. In: Openheimer N.J., James T.L. (eds.) Methods in Enzymology, vol. 177, pp. 159–204. Academic press, New York (1989)Google Scholar
  45. 45.
    Lyngsø, R.B., Pedersen, C.N.: RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7, 409–427 (2000)CrossRefGoogle Scholar
  46. 46.
    Liu, W., Chou, K.: Prediction of protein secondary structure content. Protein Eng. 12, 1041–1050 (1999)CrossRefGoogle Scholar
  47. 47.
    Macdonald, J.R., Johnson Jr, W.C.: Enviromental features are important in determining protein secondary structure. Protein Sci. 10, 1172–1177 (2001)CrossRefGoogle Scholar
  48. 48.
    Maritan, A., Micheletti, C., Triovato, A., Banava, J.B.: Optimal shapes of compact strings. Nature 406, 287–290 (2000)CrossRefGoogle Scholar
  49. 49.
    Marashi, S.A., Behrouzi, R., Pezeshk, H.: Adaptation of proteins to different environments: a comparison of proteome structural properties in Bacillus subtilis and Escherichia coli. J. Theor. Biol. 244(1), 127–132 (2007)CrossRefGoogle Scholar
  50. 50.
    MacCallum, P.H., Poet, R., Milner-White, J.E.: Coulombic interaction between partially charged main-chain atoms hydrogen-bonded to each other influence the confirmations of α–helices and antiparallel β–sheet. A new method for analysing the forces between hydrogen bonding groups in proteins includes all the coulombic interactions. J. Mol. Biol. 248, 361–373 (1995)Google Scholar
  51. 51.
    Maiti, R., von Domseleear, G.H., Zang H., Wisshart DS.: Super pose: a simple server sophisticated structural superposition. Nucleic Acid Res. 32, W590–W594 (2004)Google Scholar
  52. 52.
    Mount, D.M.: Bioinformatics: Sequence and Genome Analysis, vol. 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)Google Scholar
  53. 53.
    More, J.J., Wu, Z.: Issues in large scale global minimization. In: Biegler, L.T., Coleman, T. F., Conn, A.R., Santosa, F.N. (eds.) Large-scale optimization with applications, Part III, p. 99. Springer-Verlag, New York (1997)Google Scholar
  54. 54.
    Morgan, D., Ceder, G., Curtarolo, S.: High-throughput and data mining with ab initio methods. Meas. Sci. Technol. 16, 296–301 (2005)CrossRefGoogle Scholar
  55. 55.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)zbMATHGoogle Scholar
  56. 56.
    Nemethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H.A.: Energy parameters in polypeptides. 10. Improved geometric parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J. Phys. Chem. 96, 6472–6484 (1992)CrossRefGoogle Scholar
  57. 57.
    Nicholls, A., Sharp, K.A., Honig, B.: Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)CrossRefGoogle Scholar
  58. 58.
    Pavanï, R., Ranghino, G.: A method to compute the volume of a molecule. Comput. Chem. 6, 133–135 (1982)Google Scholar
  59. 59.
    Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.R., Cheatham III, T.E., DeBolt, S., Ferguson, D., Seibe,l G., Kollman, P.: AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Comput. Phys. Commun. 91, 1–41 (1995)Google Scholar
  60. 60.
    Pham, T.H., Satou, K., Ho, T.B.: Support vector machines for prediction and analysis of beta and gamma-turns in proteins. J. Bioinform. Comput. Biol. 3, 343–358 (2005)CrossRefGoogle Scholar
  61. 61.
    Polanowska-Grabowska, R., Simon Jr, C.G., Shabanowitz, J., Hunt, D.F., Gear, A.R.L.: Platelet adhesion to collagen under flow causes dissociation of a phosphoprotein complex of heat-shock proteins and protein phosphatase 1. Blood 90, 1516–1526 (1997)Google Scholar
  62. 62.
    Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Protein Chem. 66, 27–85 (2003)CrossRefGoogle Scholar
  63. 63.
    Ochsebein, F., Gilquin, B.: NMR for protein analysis. CLEFS CEA 56, 52–55 (2008)Google Scholar
  64. 64.
    Ott, R., Bijma, J., Hemleben, C.: A computer method for estimating volume and surface areas of complex structure consisting of overlapping spheres 16, 83–98 (1992)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Radzicka, A., Wolfeden, R.: Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 27, 1664–1670 (1988)CrossRefGoogle Scholar
  66. 66.
    Ramachandra, G.N., Ramakrishnan, C., Sasisekharan, V.: Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963)CrossRefGoogle Scholar
  67. 67.
    Raspanti, M.: Different architectures of collagen fibrils enforce different fibrillogenesis mechanisms. J. Biomed. Sci. Eng. 3, 1169–1174 (2010)Google Scholar
  68. 68.
    Rojnuckarin, A., Santae, K., Shankar, S.: Brownian dynamics simulations of protein folding: Access to milliseconds time scale and beyond. PNAS 68, 4288–4292 (1998)CrossRefGoogle Scholar
  69. 69.
    Roux, B.: Perspective in molecular dynamics and computational method. J. Cell Biol. 135, 547–548 (2010)Google Scholar
  70. 70.
    Sanjeev, A., Barak, B.: Computational Complexity: A Modern Approach, pp. 50–59. Cambridge University Press, Cambridge (2009)Google Scholar
  71. 71.
    Sanchez, R., Pieper, U., Mirkovic, N., de Bakker, P.I.W., Wittenstein, E., Sali, A.: MODBase, a database of annotated comparative protein structure models. Nucleic Acids Res. 28, 250–253 (2000)CrossRefGoogle Scholar
  72. 72.
    Sharman, G.J., Searle, M.S.: Cooperative interaction between the three strands of a designed antiparallel β-sheet. J. Am. Chem. Soc. 120, 5291–5300 (1998)CrossRefGoogle Scholar
  73. 73.
    Schenck, H.L., Gelmman, S.H.: Use of a designed tripled-stranded antiparallel β-sheet to probe β–sheet cooperativity in aqueous solution. J. Am. Chem. Soc. 120, 4869–4870 (1998)CrossRefGoogle Scholar
  74. 74.
    Shakhnovich, E.I., Farztdinov, G., Gutin, A.M., Karplus, M.: Protein folding bottlenecks: a lattice Monte Carlo simulation. Phys. Rev. Lett. 67, 1665–1668 (1991)CrossRefGoogle Scholar
  75. 75.
    Shreraga, H., Gibson, K.D.: An algorithm for packing regular multistrand polypeptide structures by energy minimization. J. Comput. Chem. 15, 1414–1428 (1994)CrossRefGoogle Scholar
  76. 76.
    Sinaglou, O.: Microscopic surface tension down to molecular dimensions and microthermodynamic surface areas of molecules or clusters. J. Chem. Phys. 1, 463–468 (1981)CrossRefGoogle Scholar
  77. 77.
    Srinavasan, R.: Helix length distribution from protein crystallographic data. Indian J. Biochem. Biophys. 13, 192–193 (1976)Google Scholar
  78. 78.
    Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)CrossRefGoogle Scholar
  79. 79.
    Ting, C.-K.: On the mean convergence time of multi-parent genetic algorithms without selection. In: Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) Advances in artificial life, p. 403 Springer-Verlag, Berlin (2005)Google Scholar
  80. 80.
    Tiraboschi, G., Gresh, N., Giessner-Prettre, C., Pedersen, L.G., Deerfield II, D.W.: A joint ab initio and molecular mechanics investigation of polycoordinated Zn(II) complexes with model hard and soft ligands. Variations of the binding energy and of its components with the number and the charges of the ligands. J. Comput. Chem. 21, 1011–1039 (2000)CrossRefGoogle Scholar
  81. 81.
    Torda, A.E., Van Gunsteren, W.F.: Molecular modelling using nuclear magnetic resonance data. In: Lipkowitz, K.B., Boy, D.B. (eds.) Reviews in Computational Chemistry, vol 3, pp. 143–172. VCH Publishers, New York (1992)Google Scholar
  82. 82.
    Voelz, V.A., Bowman, G.R., Beauchamp, K., Pande, V.S.: Molecular simulation of ab initio protein folding for a millisecond folder NTL9 (1–39). J. Am. Chem. 132, 1526–1528 (2010)CrossRefGoogle Scholar
  83. 83.
    Wade, L.G.: Structure and Stereochemistry of Alkanes: Organic Chemistry, 6th edn, pp. 103–122. Pearson Prentice Hall, Upper Saddle River (2006)Google Scholar
  84. 84.
    Wiltscheck, R., Kammerer, R.A., Dames, S.A., Schulthess, T., Blommers, M.J., Engel, J., Alexandrescu, A.T.: NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms. Protein Sci. 6, 1734–1745 (1997)CrossRefGoogle Scholar
  85. 85.
    William, P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran, 2nd edn., pp. 312–326. Cambridge University Press, Cambridge (1992)Google Scholar
  86. 86.
    Word, J.M., Lovell, S.C., LaBean, T.H., Taylor, H.C., Zalis, M.E., Presley, B.K., Richardson, J.S., Richardson, D.C.: Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogens. J. Mol. Biol. 285, 1711–1733 (1999)CrossRefGoogle Scholar
  87. 87.
    Zimmermann, O., Hansmann, U.H.: Support vector machines for prediction of dihedral angle regions. Bioinformatics 22, 3009–3015 (2006)CrossRefGoogle Scholar
  88. 88.
    Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33(7), 2302–2309 (2005)Google Scholar
  89. 89.
    Zhang, X.Q., Jansem, A.P.: Kinetic Monte Carlo method for simulating reactions in Solution. Phy. Rev. E Stat. Nonlin. Softw. Matter Phys. 82, 046704 (2010)Google Scholar
  90. 90.
    Zhong, L., Johnson Jr, W.C.: Environment affects amino acid preference for secondary structure. PNAS 89, 4462–4465 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Meir Israelowitz
    • 1
  • Birgit Weyand
    • 2
  • Syed W. H. Rizvi
    • 1
  • Christoph Gille
    • 1
    • 3
  • Herbert P. von Schroeder
    • 1
    • 4
    • 5
  1. 1.Biomimetics Technologies IncTorontoCanada
  2. 2.Department of Plastic, Hand and Reconstructive SurgeryHannover Medical SchoolHannoverGermany
  3. 3.Institute of BiochemistryCharite UniversitsaetsmedizinBerlinGermany
  4. 4.University Health NetworkTorontoCanada
  5. 5.University of TorontoTorontoCanada

Personalised recommendations