Skip to main content

Continuum Modelling of In Vitro Tissue Engineering: A Review

  • Chapter
  • First Online:
Computational Modeling in Tissue Engineering

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 10))

Abstract

By providing replacements for damaged tissues and organs, in vitro tissue engineering has the potential to become a viable alternative to donor-provided organ transplant, which is increasingly hampered by a shortage of available tissue. The complexity of the myriad biophysical and biochemical processes that together regulate tissue growth renders almost impossible understanding by experimental investigation alone. Mathematical modelling applied to tissue engineering represents a powerful tool with which to investigate how the different underlying processes interact to produce functional tissues for implantation. The aim of this review is to demonstrate how a combination of mathematical modelling, analysis and in silico computation, undertaken in collaboration with experimental studies, may lead to significant advances in our understanding of the fundamental processes that regulate biological tissue growth and the optimal design of in vitro methods for generating replacement tissues that are fully functional. With this in mind, we review the state-of-the-art in theoretical research in the field of in vitro tissue engineering, concentrating on continuum modelling of cell culture in bioreactor systems and with particular emphasis on the generation of new tissues from cells seeded on porous scaffolds. We highlight the advantages and limitations of different mathematical modelling approaches that can be used to study aspects of cell population growth. We also discuss future mathematical and computational challenges and interesting open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon, T., Byrne, H.M., Maini, P.K.: A multiple scale model for tumour growth. Multiscale Mod. Sim. 3, 440–475 (2010)

    Article  MathSciNet  Google Scholar 

  • Ambrosi, D., Preziosi, L., Vitale, G.: The insight of mixtures theory for growth and remodelling. Z. Angew. Math. Phys. 61, 177–191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, A.R.A, Chaplain, M.A.J., McDougall, S.: A hybrid discrete-continuum model of tumour induced angiogenesis. In: Jackson Trachette, L. (ed.) Modeling Tumor Vasculature, pp. 105–133. Springer, New York (2012). ISBN:978-1-4614-0052-3

    Google Scholar 

  • Araujo, R.P., McElwain, D.L.S.: A mixture theory for the genesis of residual stresses in growing tissues i: a general formulation. SIAM J. Appl. Math. 65, 1261–1284 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  • Araujo, R.P., McElwain, D.L.S.: A mixture theory for the genesis of residual stresses in growing tissues ii: solutions to the biphasic equations for a multicell spheroid. SIAM. J. Appl. Math. 66, 447–467 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  • Atala, A., Mooney, D.J., Vacanti, J.P, Langer, R.: Synthetic biodegradable polymer scaffolds. Birkhèauser, Boston (1997)

    Google Scholar 

  • Ateshian, G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6(6), 423–445 (2007)

    Article  Google Scholar 

  • Bakker, A., Klein-Nulend, J., Burger, E.: Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem. Biophys. Res. Commun. 320(4), 1163–1168 (2004a)

    Article  Google Scholar 

  • Bakker, A., Klein-Nulend, J., Burger, E.: Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem. Biophys. Res. Comm. 320, 1163–1168 (2004b)

    Article  Google Scholar 

  • Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  MATH  Google Scholar 

  • Boschetti, F., Raimondi, M.T., Migliavacca, F., Dubini, G.: Prediction of the micro-fluid dynamics environment imposed to three-dimensional engineered cell systems in bioreactors. J. Biomech. 39, 418–425 (2006)

    Article  Google Scholar 

  • Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3. Academic Press, New York (1976)

    Google Scholar 

  • Breward, C.J.W., Byrne, H.M., Lewis, C.E.: The role of cell–cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45(2), 125–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Butler, D.L., Hunter, S.A., Chokalingam, K., Cordray, M.J., Shearn, J., Juncosa-Melvin, N., Nirmalanandhan, S., Jain, A.: Using functional tissue engineering and bioreactors to mechanically stimulate tissue-engineered constructs. Tissue Eng. Part A 15(4), 741–749 (2009)

    Article  Google Scholar 

  • Byrne, H., Drasdo, D.: Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009)

    Article  MathSciNet  Google Scholar 

  • Byrne, H.M, Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20(4), 341–366 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Cartmell, S.H., El Haj, A.J.: Mechanical bioreactors for tissue engineering. In: Chaudhuri, J., Al-Rubeai, M. (eds.) Bioreactors for Tissue Engineering: Principles Design and Operation, Chap. 8, pp. 193–209. Springer, Dordrecht (2005)

    Google Scholar 

  • Causin, P., Sacco, R.: A computational model for biomass growth simulation in tissue engineering. Comm. Appl. Ind. Math. 2(1), 1--20 doi:10.1685/journal.caim.370 (2011)

    MathSciNet  Google Scholar 

  • Cheng, G., Markenscoff, P., Zygourakis, K.: A 3D hybrid model for tissue growth: the interplay between cell population and mass transport dynamics. Biophys. J. 97(2), 401–414 (2009)

    Article  Google Scholar 

  • Chung, C.A., Yang, C.W., Chen, C.W.: Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Biotech. Bioeng. 94(6), 1138–1146 (2006)

    Article  Google Scholar 

  • Chung, C.A., Chen, C.W., Chen, C.P., Tseng, C.S.: Enhancement of cell growth in tissue-engineering constructs under direct perfusion: modeling and simulation. Biotech. Bioeng. 97(6), 1603–1616 (2007)

    Article  Google Scholar 

  • Chung, C.A., Lin, T.-H., Chen, S.-D., Huang, H.-I: Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs. J. Theor. Biol. 262(2), 267–278 (2010)

    Article  Google Scholar 

  • Chuong, C.J., Fung, Y.C.: On residual stresses in arteries. J. Biomech. Eng. 108, 189 (1986)

    Article  Google Scholar 

  • Cinar, A., Parulekar, S.J., Undey, C., Birol, G.: Batch Fermentation: Modeling Monitoring and Control. Marcel Dekker Inc., New York (2003)

    Google Scholar 

  • Cioffi, M., Boschetti, F., Raimondi, M.T., Dubini, G.: Modeling evaulation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-ct based model. Biotech. Bioeng. 93(3), 500–510 (2006)

    Article  Google Scholar 

  • Cioffi, M., Küffer, J., Ströbel, S., Dubini, G., Martin, I., Wendt, D.: Computational evaluation of oxygen and shear stress distributions in 3d perfusion culture systems: macro-scale and micro-structured models. J. Biomech. 41, 2918–2925 (2008)

    Article  Google Scholar 

  • Coletti, F., Macchietto, S., Elvassore, N.: Mathematical modeling of three-dimensional cell cultures in perfusion bioreactors. Ind. Eng. Chem. Res. 45, 8158–8169 (2006)

    Article  Google Scholar 

  • Consolo, F., Bariani, C., Mantalaris, A., Montevecchi, F., Redaelli, A. Morbiducci, U.: Computational modeling for the optimization of a cardiogenic 3d bioprocess of encapsulated embryonic stem cells. Biomech. Model. Mechanobiol. 11 1–17 (2011)

    Google Scholar 

  • Cummings, L.J., Waters, S.L.: Tissue growth in a rotating bioreactor. part ii: fluid flow and nutrient transport problems. Math. Med. Biol. 24, 169–208 (2006)

    Article  Google Scholar 

  • Cummings, L.J., Sawyer, N.B.E., Morgan, S.P., Rose, F.R.A.J., Waters, S.L.: Tracking large solid constructs suspended in a rotating bioreactor: a combined experimental and theoretical study. Biotech. Bioeng. 104(6), 1224–1234 (2009)

    Article  Google Scholar 

  • Devarapalli, M., Lawrence, B.J., Madihally, S.V.: Modeling nutrient consumption in large flow-through bioreactors in tissue engineering. Biotech. Bioeng. 103(5), 1003–1015 (2009)

    Article  Google Scholar 

  • Drasdo, D., Hohme, S.: A single-cell-based model of tumour growth in vitro: monolayers and spheroids. Phys. Biol. 2(3), 133–147 (2005)

    Article  Google Scholar 

  • Drew, D.A.: Mathematical modelling of two-phase flow. Ann. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  Google Scholar 

  • Dunn, J.C.Y., Chan, W.-Y., Cristini, V., Kim, J.S., Lowengrub, J., Singh, S., Wu, B.M.: Analysis of cell growth in three-dimensional scaffolds. Tiss. Eng. 12(4), 705–715 (2006)

    Article  Google Scholar 

  • Eibl, D., Eibl, R.: Bioreactors for mammalian cells: general overview. In: Eibl, R., Eibl, D., Pörtner, R., Carapano, G., Czermak, P. (eds.) Cell and Tissue Reaction Engineering: Principles and Practice. Springer, Berlin (2009)

    Google Scholar 

  • El-Haj, A.J., Minter, S.L., Rawlinson, S.C., Suswillo, R., Lanyon, L.E.: Cellular responses to mechanical loading in vitro. J. Bone Min. Res. 5(9), 923–932 (1990)

    Article  Google Scholar 

  • Fozard, J.A., Byrne, H.M, Jensen, O.E., King, J.R.: Continuum approximations of individual-based models for epithelial monolayers. Math. Med. Biol. 27(1), 39 (2010). ISSN:1477-8599

    Google Scholar 

  • Franks, S.J., King, J.R.: Interactions between a uniformly proliferating tumour and its surroundings: uniform material properties. Math. Med. Biol. 20, 47–89 (2003)

    Article  MATH  Google Scholar 

  • Freed, L.E., Vunjak-Novakovic, G.: Culture of organized cell communities. Adv. Drug Del. Rev. 33, 15–30 (1998)

    Article  Google Scholar 

  • Freed, L.E., Vunjak-Novakovic, G., Langer, R.: Cultivation of cell-polymer cartilage implants in bioreactors. J. Cell Biochem. 41, 257–264 (1993)

    Article  Google Scholar 

  • Freed, L.E., Marquis, J.C., Langer, R., Vunjak-Novakovic, G.V.: Kinetics of chondrocyte growth in cell-polymer implants. Biotech. Bioeng. 43, 605–614 (1994)

    Article  Google Scholar 

  • Fung, Y.: What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19, 237–249 (1991). ISSN:0090-6964

    Google Scholar 

  • Galban, C.J., Locke, B.R.: Analysis of cell growth in a polymer scaffold using a moving boundary approach. Biotech. Bioeng. 56(4), 422–432 (1997)

    Article  Google Scholar 

  • Galban, C.J., Locke, B.R.: Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold. Biotech. Bioeng. 65(2), 121–132 (1999a)

    Article  Google Scholar 

  • Galban, C.J., Locke, B.R.: Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold. Biotech. Bioeng. 64(6), 633–643 (1999b)

    Article  Google Scholar 

  • Hadeler, K.P., Hillen, T., Lutscher, F.: The langevin or kramers approach to biological modeling. Math. Models Meth. Appl. Sci 14, 1561–1583 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hammond, T.G., Hammond, J.M.: Optimized suspension culture: the rotating-wall vessel. Physiol. Renal Physiol. 281, F12–F25 (2001)

    Google Scholar 

  • Han, Y., Cowin, S.C., Schaffler, M.B., Weinbaaum, S.: Mechanotransduction and strain amplification in osteocyte cell processes. Proc. Nat. Acad. Sci. 101(47), 16689–16694 (2004)

    Article  Google Scholar 

  • Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4(7), 518–524 (2005)

    Article  Google Scholar 

  • Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24), 2529–2543 (2000)

    Article  Google Scholar 

  • Jeong, D., Yun, A., Kim, J.: Mathematical model and numerical simulation of the cell growth in scaffolds. Biotech. Model. Mechanobiol. (2011) doi:10.1007/s10237-011-0342-y.

  • Johnson, E.S.: Transplant activity in the uk. activity report 2009/2010. http://www.nhsbt.nhs.uk (2010)

  • Jones, A.F., Byrne, H.M., Gibson, J.S., Dold, J.W.: A mathematical model of the stress induced during avascular tumour growth. J. Math. Biol. 40(6), 473–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Julien, C., Whitford, W.: Bioreactor monitoring modeling and simulation. BioProcess Int. Suppl. 5(1), 10–17 (2007)

    Google Scholar 

  • Kim, Y., Stolarska, M.A., Othmer, H.G.: A hybrid model for tumour spheroid growth in vitro i: theoretical development and early results. Math. Models Meth. App. Sci. 17, 1773–1798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Klein-Nulend, J., Roelofsen, J., Sterck, J.G., Semeins, C.M., Burger, E.H.: Mechanical loading stimulates the release of transforming growth factor-beta activity by cultured mouse calvariae and periosteal cells. J. Cell Physiol. 163(1), 115–119 (1995a)

    Article  Google Scholar 

  • Klein-Nulend, J., Vander Plas, A., Semeins, C.M., Ajubi, N.E., Frangos, J.A., Nijweide, P.J., Burger, E.H.: Sensitivity of osteocytes to biomechanical stress in vitro. FASEB 9(5), 441–445 (1995b)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, vol. 1—Fundamentals. Springer, Berlin (2002)

    Google Scholar 

  • Kwon, O., Devarakonda, S.B., Sankovic, J.M., Banerjee, R.K.: Oxygen transport and consumption by suspended cells in microgravity: a multiphase analysis. Biotech. Bioeng. 99(1), 99–107 (2008)

    Article  Google Scholar 

  • Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  • Landman, K.A., Cai, A.Q.: Cell proliferation and oxygen diffusion in a vascularising scaffold. Bull. Math. Biol. 69(7), 2405–2428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Landman, K.A., Please, C.P.: Tumour dynamics and necrosis: surface tension and stability. Math. Med. Biol. 18(2), 131–158 (2001)

    Article  MATH  Google Scholar 

  • Lappa, M.: Organic tissues in rotating bioreactors: fluid-mechanical aspects dynamic growth models and morphological evolution. Biotech. Bioeng. 84(5), 518–532 (2003)

    Article  Google Scholar 

  • Lawrence, B.J., Deverapalli, M., Madihally, S.V.: Flow dynamics in bioreactors containing tissue engineering scaffolds. Biotech. Bioeng. 102(3), 935–947 (2008)

    Article  Google Scholar 

  • Lemon, G., King, J.R.: Multiphase modelling of cell behaviour on artificial scaffolds: effects of nutrient depletion and spatially nonuniform porosity. Math. Med. Biol. 24(1), 57–83 (2007a)

    Article  MATH  Google Scholar 

  • Lemon, G., King, J.R.: Travelling-wave behaviour in a multiphase model of a population of cells in an artificial scaffold. J. Math. Biol. 55(4), 449–480 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Lemon, G., King, J.R., Byrne, H.M., Jensen, O.E., Shakesheff, K.: Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol. 52(2), 571–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lemon, G., Howard, D., Tomlinson, M.J., Buttery, L.D., Rose, F.R.A.J., Waters, S.L., King, J.R.: Mathematical modelling of tissue-engineered angiogenesis. Math. Biosci. 221, 101–120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, M.C., MacArthur, B.D., Malda, J., Pettet, G., Please, C.P.: Heterogeneous proliferation with engineered cartilaginous tissue: the role of oxygen tension. Biotech. Bioeng. 91(5), 607–615 (2005)

    Article  Google Scholar 

  • Lin, R.Z., Chang, H.Y.: Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology 3(9-10), 1172–1184 (2008)

    MathSciNet  Google Scholar 

  • Loret, B., Simões, F.M.F.: A framework for deformation generalized diffusion mass transfer and growth in multi-species multi-phase biological tissues. Eur. J. Mech.-A/Solids 24(5), 757–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Lutianov, M., Naire, S., Roberts, S., Kuiper, J.-H.: A mathematical model of cartilage regeneration after cell therapy. J. Theor. Biol. 289, 136–150 (2011)

    Article  Google Scholar 

  • Marle, C.M.: On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media. Int. J. Eng. Sci. 20(5), 643–662 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Martin, I., Wendt, D., Heberer, M.: The role of bioreactors in tissue engineering. Trends Biotechnol 22(2), 80–86 (2004)

    Article  Google Scholar 

  • McCoy, R.J., O’Brien, F.J.: Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng. B 16(6), 587–601 (2010)

    Article  Google Scholar 

  • Meineke, F.A., Potten, C.S., Loeffler, M.: Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 34(4), 253–266 (2001). ISSN:0960-7722

    Google Scholar 

  • Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73 (1980)

    Article  Google Scholar 

  • Mullender, M., El-Haj, A.J., Yang, Y., van Duin, M.A., Burger, E.H, Klein-Nulend, J.: Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med. Biol. Eng. Comput. 42, 14–21 (2004)

    Article  Google Scholar 

  • Murray, P.J., Edwards, C.M., Tindall, M.J., Maini, P.K.: From a discrete to a continuum model of cell dynamics in one dimension. Phys. Rev. E 80(3), 031912 (2009)

    Article  Google Scholar 

  • Noble, B.S., Reeve, J.: Osteocyte function osteocyte death and bone fracture resistance. Mol. Cell. Endocrinol. 159(1–2), 7–13 (2000)

    Article  Google Scholar 

  • Novosel, E.C., Kleinhans, C., Kluger, P.J.: Vascularization in the key challenge in tissue engineering. Adv. Drug Del. Rev. 63, 300–311 (2011)

    Article  Google Scholar 

  • Obradovic, B., Meldon, J.H., Freed, L.E., Vunjak-Novakovic, G.: Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AICHE J. 46(9), 1860–1871 (2000)

    Article  Google Scholar 

  • O’Dea, R.D., King, J.R.: Multiscale analysis of pattern formation via intercellular signalling. Math. Biosci. 231, 172–185 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • O’Dea, R.D., King, J.R.: Continuum limits of pattern formation in hexagonal-cell monolayers. J. Math. Biol. (2011b). doi:10.1007/s00285-011-0427-3

  • O’Dea, R.D., Waters, S.L., Byrne, H.M.: A two-fluid model for tissue growth within a dynamic flow environment. Eur. J. Appl. Math. 20, 47–89 (2008)

    MathSciNet  Google Scholar 

  • O’Dea, R.D., Waters, S.L., Byrne, H.M.: A multiphase model for tissue construct growth in a perfusion bioreactor. Math. Med. Biol. 27(2), 95–127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • O’Dea, R.D., Osborne, J.M., El-Haj, A.J., Byrne H.M., Waters, S.L.: The interplay between scaffold degradation tissue growth and cell behaviour in engineered tissue constructs. Submitted to J. Math. Biol. (2012)

    Google Scholar 

  • Osborne, J.M., Whiteley, J.P.: A numerical method for the multiphase viscous flow equations. Comp. Meth. Appl. Mech. Eng. 199(49–52), 3402–3417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Osborne, J.M., O’Dea, R.D., Whiteley, J.P., Byrne, H.M., Waters, S.L.: The influence of bioreactor geometry and the mechanical environment on engineered tissues. J. Biomech. Eng. 132, 051006 (2010)

    Article  Google Scholar 

  • Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Ouchi, N.B., Glazier, J.A., Rieu, J.P., Upadhyaya, A., Sawada, Y.: Improving the realism of the cellular potts model in simulations of biological cells. Phys. A 329(3–4), 451–458 (2003)

    MathSciNet  MATH  Google Scholar 

  • Owen, M.R., Alarcon, T., Maini, P.K., Byrne, H.M.: Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009)

    Google Scholar 

  • Palferman, T.G.:Bone and joint diseases around the world. The UK perspective. J. Rheumatol. 67, 33 (2003). ISSN:0315-162X

    Google Scholar 

  • Passman, S.L., Nunziato, J.W.: A theory of multiphase mixtures. In: Truesdell, C. (ed.) Rational Thermodynamics. Springer, New York (1984)

    Google Scholar 

  • Pitt-Francis, J., Pathmanathan, P., Bernabeu, M.O., Bordas, R., Cooper, J., Fletcher, A.G., Osborne, J.M., Walter, A., Chapman, S.J., Garny, A., Leeuwen, I.M.M., Van Maini, P.K., Rodriguez, B., Waters, S.L., Whiteley, J.P., Byrne, H.M., Gavaghan, D.: Chaste: a test-driven approach to software development for biological modelling. Comp. Phys. Comm. 180(12), 2452–2471 (2000)

    Google Scholar 

  • Please, G., McElwain, D.L.S.: A new approach to modelling the formation of necrotic regions in tumours. Appl. Math. Lett. 11(3), 89–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Please, C.P., Pettet, G.J., McElwain, D.L.S.: Avascular tumour dynamics and necrosis. Math. Models Meth. Appl. Sci. 9(4), 569–580 (1999)

    Article  MATH  Google Scholar 

  • Preziosi, L., Tosin, A.: Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58(4), 625–656 (2009)

    Article  MathSciNet  Google Scholar 

  • Raimondi, M.T., Boschetti, F., Falcone, L., Migliavacca, F., Remuzzi, A., Dubini, G.: The effect of media perfusion on three-dimensional cultures of human chondrocytes: integration of experimental and computational approaches. Biorheology 41, 401–410 (2004)

    Google Scholar 

  • Riccalton-Banks, L., Liew, C., Bhandari, R., Fry, J., Shakesheff, K.: Long-term culture of functional liver tissue: three-dimensional coculture of primary hepatocytes and stellate cells. Tissue Eng. 9(3), 401–410 (2003)

    Article  Google Scholar 

  • Ricken, T., Bluhm, J.: Remodeling and growth of living tissue: a multiphase theory. Arch. Appl. Mech. 80(5), 453–465 (2010)

    Article  Google Scholar 

  • Risbud, M.V., Sittinger, M.: Tissue engineering: advances in in vitro cartilage generation. Trends Biotech. 20(8), 351–356 (2002)

    Article  Google Scholar 

  • Roelofsen, J., Klein-Nulend, J., Burger, E.H.: Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech. 28(12), 1493–1503 (1995)

    Article  Google Scholar 

  • Roose, T., Netti, P.A., Munn, L.L., Boucher, Y., Jain, R.K.: Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc. Res. 66(3), 204–212 (2003)

    Article  Google Scholar 

  • Salgado, A.J., Coutinho, O.P., Reis, R.L.: Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 4, 743–765 (2004)

    Article  Google Scholar 

  • Sawyer, N.B.E., Worrall, L.K., Crowe, J.A., Waters, S.L., Shakesheff, K.M., Rose, F.R.A.J., Morgan, S.P.: In situ monitoring of 3d in vitro cell aggregation using an optical imaging system. Biotech. Bioeng. 100(1), 159–167 (2007)

    Article  Google Scholar 

  • Schwartz, L.W.: Instability and fingering in a rotating hele-shaw cell. Phys. Fluids A 1, 167–169 (1989)

    Article  Google Scholar 

  • Shakeel, M., Matthews, P.C., Waters, S.L. Graham, R.S.: A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor. Math. Med. Biol. doi:10.1093/imammb/dqr022 (2011)

  • Shipley R.J. and Waters S.L., (2011) Fluid and mass transport modelling to drive design of cell-packed hollow fibre bioreactors for tissue engineering applications. Math. Med. Biol. Accepted.

    Google Scholar 

  • Shipley, R.J., Jones, G.W., Dyson, R.J., Sengers, B.G., Bailey, C.L., Catt, C.J., Please, C.P., Malda, J.: Design criteria for a printed tissue engineering construct: a mathematical homogenization approach. J. Theor. Biol. 259(3), 489–502 (2009)

    Article  MathSciNet  Google Scholar 

  • Shipley, R.J., Waters, S.L., Ellis, M.J.: Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors. Biotech. Bioeng. 107, 382–392 (2010)

    Article  Google Scholar 

  • Shipley, R.J., Davidson, A.J., Chan, K., Chaudhuri, J.B., Waters, S.L., Ellis, M.J.: A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors. Biotech. Bioeng. 108, 1450–1461 (2011)

    Article  Google Scholar 

  • Sipe, J.D.: Tissue engineering and reparative med. Ann. N. Y. Acad. Sci. 961, 1–9 (2002)

    Article  Google Scholar 

  • Trelstad, R.L., Silver, F.H.H.: Matrix assembly. In: Hay, E.D. (ed.) Cell biology of the extracellular matrix (1981)

    Google Scholar 

  • Treusdell, C., Noll, W.: The nonlinear field theory of mechanics. In: Flugge S. (ed.) Handbuch der physik. (1960)

    Google Scholar 

  • Turner, S., Sherratt, J.A., Painter, K.J., Savill, N.J.: From a discrete to a continuous model of biological cell movement. Phys. Rev. E 69(2), 021910 (2004)

    Article  MathSciNet  Google Scholar 

  • Urban, J.P.G.: The chondrocyte: a cell under pressure. Rheumatology 33(10), 901–908 (1994)

    Article  Google Scholar 

  • Van Leeuwen, I.M.M., Mirams, G.R., Walter, A., Fletcher, A., Murray, P., Osbourne, J., Varma, S., Young, S.J., Cooper, J., Doyle, B. et al.: An integrative computational model for intestinal tissue renewal. Cell Prolif. 42(5), 617–636 (2009)

    Google Scholar 

  • Waters, S.L., Cummings, L.J.: Coriolis effects in a rotating hele-shaw cell. Phys. Fluids 18, 048101 (2005)

    Article  MathSciNet  Google Scholar 

  • Waters, S.L., Cummings, L.J., Shakesheff, K.M., Rose, F.R.A.J.: Tissue growth in a rotating bioreactor. part i: mechanical stability. Math. Med. Biol. 23, 311–337 (2006)

    Article  MATH  Google Scholar 

  • Weiss P., (1945) Experiments on cell and axon orientation in vitro: the role of colloidal exudates in tissue organization. J. Exp. Zool. 100(3), 353–386. ISSN:1097-010X

    Google Scholar 

  • Whitaker, S.: The transport equations for multi-phase systems. Chem. Eng. Sci. 28, 139–147 (2000)

    Google Scholar 

  • Whittaker, R.J., Booth, R., Dyson, R., Bailey, C., Parsons Chini, L., Naire, S., Payvandi, S., Rong, Z., Woollard, H., Cummings, L.J., Waters, S.L., Mawasse, L., Chaudhuri, J.B., Ellis, M.J., Michael, V., Kuiper, N.J., Cartmell, S.: Mathematical modelling of fibre-enhanced perfusion inside a tissue engineering bioreactor. J. Theor. Biol. 256, 533–546 (2009)

    Article  Google Scholar 

  • Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous biological systems. Na. Genet. 10(2), 122–133 (2009)

    MathSciNet  Google Scholar 

  • Wilson, D.J., King, J.R., Byrne, H.M.: Modelling scaffold occupation by a growing nutrient-rich tissue. Math. Models Meth. App. Sci. 17, 1721–1750 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Yano, S., Komine, M., Fujimoto, M., Okochi, H., Tamaki, K.: Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J. Invest. Dermatol. 122(3), 783–790 (2004)

    Article  Google Scholar 

  • You, J., Yellowley, C.E., Donahue, H.J., Zhang, Y., Chen, Q., Jacobs, C.R.: Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J. Biomech. Eng. 122, 377–393 (2000)

    Article  Google Scholar 

  • Yourek, G., Al-Hadlaq, A., Patel, R., McCormick, S., Reilly, G.C., Mao, J.J.: Nanophysical properties of living cells. In: Stroscio Michael, A., Mitra, D., Bin, H. (eds.) Biological Nanostructures and Applications of Nanostructures in Biology Bioelectric Engineering. Springer, New York (2004)

    Google Scholar 

  • Yu, X., Botchwey, E.A., Levine, E.M., Pollack, S.R., Laurencin, C.T.: Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. PNAS 101(31), 11203 (2004)

    Article  Google Scholar 

  • Zdrahala, R.J., Zdrahala, I.J.: In vivo tissue engineering: part I. Concept genesis and guidelines for its realization. J. Biomat. Appl. 14(2), 192 (1999). ISSN:0885-3282

    Google Scholar 

Download references

Acknowledgments

SLW is grateful to the EPSRC for funding in the form of an Advanced Research Fellowship and HMB thanks the Oxford Centre for Collaborative Applied Mathematics. This publication is based on work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RD O’Dea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Dea, R., Byrne, H., Waters, S. (2012). Continuum Modelling of In Vitro Tissue Engineering: A Review. In: Geris, L. (eds) Computational Modeling in Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_140

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_140

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32562-5

  • Online ISBN: 978-3-642-32563-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics