Skip to main content

Harmonic Motion Imaging for Tumor Imaging and Treatment Monitoring

  • Chapter
  • First Online:
Book cover Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

Abstract

Palpation is an established screening procedure for the detection of several superficial cancers including breast, thyroid, prostate, and liver tumors through both self and clinical examinations. This is because solid masses typically have distinct stiffnesses compared to the surrounding normal tissue. In this paper, the application of Harmonic Motion Imaging (HMI) for tumor detection based on its stiffness as well as its relevance in thermal treatment is reviewed. HMI uses a focused ultrasound (FUS) beam to generate an oscillatory acoustic radiation force for an internal, non-contact palpation to internally estimate relative tissue hardness. HMI studies have dealt with the measurement of the tissue dynamic motion in response to an oscillatory acoustic force at the same frequency, and have been shown feasible in simulations, phantoms, ex vivo human and bovine tissues as well as animals in vivo. Using an FUS beam, HMI can also be used in an ideal integration setting with thermal ablation using high-intensity focused ultrasound (HIFU), which also leads to an alteration in the tumor stiffness. In this paper, a short review of HMI is provided that encompasses the findings in all the aforementioned areas. The findings presented herein demonstrate that the HMI displacement can accurately depict the underlying tissue stiffness, and the HMI image of the relative stiffness could accurately detect and characterize the tumor or thermal lesion based on its distinct properties. HMI may thus constitute a non-ionizing, cost-efficient and reliable complementary method for noninvasive tumor detection, localization, diagnosis and treatment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pellot-Barakat, C., Sridhar, M., Lindfors, K.K., Insana, M.F.: Ultrasonic elasticity imaging as a tool for breast cancer diagnosis and research. Curr. Med. Imag. Rev. 2(1), 157–164 (2006)

    Article  Google Scholar 

  2. Kolb, T.M., Lichy, J., Newhouse, J.H.: Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225(1), 165–175 (2002)

    Article  Google Scholar 

  3. Insana, M.F., Pellot-Barakat, C., Sridhar, M., Lindfors, K.K.: Viscoelastic imaging of breast tumor microenvironment with ultrasound. J. Mammary Gland Biol. Neoplasia 9(4), 393–404 (2004)

    Article  Google Scholar 

  4. Krouskop, T.A., Wheeler, T.M., Kallel, F., Garra, B.S., Hall, T.: Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20(4), 260–274 (1998)

    Google Scholar 

  5. Gao, L., Parker, K.J., Alam, S.K., Lerner, R.M.: Sonoelasticity imaging—theory and experimental—verification. J. Acoust. Soc. Am. 97(6), 3875–3886 (1995)

    Article  Google Scholar 

  6. Gao, L., Parker, K.J., Alam, S.K., Rubens, D., Lerner, R.M.: Theory and application of sonoelasticity imaging. Int. J. Imaging Syst. Technol. 8(1), 104–109 (1997)

    Article  Google Scholar 

  7. Lerner, R.M., Huang, S.R., Parker, K.J.: “Sonoelasticity” im-ages derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med. Biol. 16, 231–239 (1990)

    Article  Google Scholar 

  8. Lerner, R.M., et al.: Sono-elasticity: medical elasticity images derived from ultra-sound signals in mechanically vibrated targets. In: Abstracts of the 16th International Acoustical Imaging Symposium, pp. 317–327. Plenum, New York (1988)

    Google Scholar 

  9. Yamakoshi, Y., Sato, J., Sato, T.: Ultrasonic-imaging of in-ternal vibration of soft-tissue under forced vibration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 45–53 (1990)

    Article  Google Scholar 

  10. Parker, K.J., Huang, S.R., Musulin, R.A., Lerner, R.M.: Tissue response to mechanical vibrations for “sonoelasticity imaging”. Ultrasound Med. Biol. 16(3), 241–246 (1990)

    Article  Google Scholar 

  11. Huang, S.R., Lerner, R.M., Parker, K.J.: On estimating the amplitude of harmonic vibration from the Doppler spectrum of reflected signals. J. Acoust. Soc. Am. 88(6), 2702–2712 (1990)

    Article  Google Scholar 

  12. Huang, S.R., Lerner, R.M., Parker, K.J.: Time domain Doppler estimators of the amplitude of vibrating targets. J. Acoust. Soc. Am. 91(2), 965–974 (1992)

    Article  Google Scholar 

  13. Parker, K.J., Lerner, R.M.: Sonoelasticity of organs—shear waves rings a bell. J Ultrasound Med 11(8), 387–392 (1992)

    Google Scholar 

  14. Cho, N., Moon, W.K., Kim, H.Y., Chang, J.M., Park, S.H., Lyou, C.Y.: Sonoelastographic Strain Index for Differentiation of Benign and Malignant Nonpalpable Breast Masses. J. Ultrasound Med. 29(1), 1–7 (2010)

    Google Scholar 

  15. Fleury, E.F.C., Rinaldi, J.F., Piato, S., Fleury, J.C.V., Roveda, D.: Appearence of breast masses on sonoelastography with special focus on the diagnosis of fibroadenomas. Eur. Radiol. 19(6), 1337–1346 (2009)

    Article  Google Scholar 

  16. Moon, W.K., Huang, C.-S., Shen, W.-C., Takada, E., Chang, R.-F., Joe, J., Nakajima, M., Kobayashi, M.: Analysis of Elastographic and B-mode Features at Sonoelastography for Breast Tumor Classification. Ultrasound Med. Biol. 35(11), 1794–1802 (2009)

    Article  Google Scholar 

  17. Scaperrotta, G., Ferranti, C., Costa, C., Mariani, L., Marchesini, M., Suman, L., Folini, C., Bergonzi, S.: Role of sonoelastogra-phy in non-palpable breast lesions. Eur Radiol 18(11), 2381–2389 (2008)

    Article  Google Scholar 

  18. Thomas, A., et al.: Realtime sonoelastography improved a better differentiation of breast le-sions in addition to B-mode ultrasound and mammography. Breast Cancer Res. Treat. 100, S127–S127 (2006)

    Google Scholar 

  19. Thomas, A., Kummel, S., Fritzsche, F., Warm, M., Ebert, B., Hamm, B., Fischer, T.: Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: Improved differentiation of breast lesions? Acad Radiol 13(12), 1496–1504 (2006)

    Article  Google Scholar 

  20. Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elas-tography: A quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2), 111–134 (1991)

    Article  Google Scholar 

  21. Thomas, A., et al.: Real-time elastography—an advanced method of ultrasound: first results in 108 patients with breast lesions. Ultrasound Obstet. Gynecol. 28(3), 335–340 (2006)

    Google Scholar 

  22. Céspedes, E.I., de Korte, C.L., van der Steen, A.F.W., Von Birgelen, C., Lancée, C.T.: Intravascular elastography: principle and potentials. Sem Intev. Cardiol. 2, 55–62 (1997)

    Google Scholar 

  23. Garra, B.S., Céspedes, E.I., Ophir, J., Spratt, R.S., Zuurbier, R.A., Magnant, C.M., Pennanen, M.F.: Elastography of breast le-sions: Initial clinical results. Radiology 202, 79–86 (1997)

    Google Scholar 

  24. Céspedes, I., Ophir, J., Ponnekanti, H., Maklad, N.: Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging 15, 73–88 (1993)

    Article  Google Scholar 

  25. Thitaikumar, A., Mobbs, L.M., Kraemer-Chant, C.M., Garra, B.S., Ophir, J.: Breast tumor classification using axial shear strain elastography: a feasibility study. Phys. Med. Biol. 53(17), 4809–4823 (2008)

    Article  Google Scholar 

  26. Egorov, V., Kearney, T., Pollak, S.B., Rohatgi, C., Sarvazyan, N., Airapetian, S., Browning, S., Sarvazyan, A.: Differentiation of benign and malignant breast lesions by mechanical imaging. Breast Cancer Res. Treat. 118(1), 67–80 (2009)

    Article  Google Scholar 

  27. Egorov, V., Sarvazyan, A.P.: Mechanical imaging of the breast. IEEE Trans Med Imaging 27(9), 1275–1287 (2008)

    Article  Google Scholar 

  28. Sarvazyan, A., Egorov, V., Son, J.S., Kaufman, C.S.: Cost-Effective Screening for Breast Cancer Worldwide: Current State and Future Directions. BCBCR 1, 91–99 (2008)

    Google Scholar 

  29. Plewes, D.B., Silver, S., Starkoski, B., Walker, C.L.: Magnetic resonance imaging of ultrasound fields: Gradient characteristics. J. Magn. Reson. Imaging 11(4), 452–457 (2000)

    Article  Google Scholar 

  30. Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., Ehman, R.L.: Magnetic-Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves. Science 269, 1854–1857 (1995)

    Article  Google Scholar 

  31. Lorenzen, J., Sinkus, R., Lorenzen, M., Dargatz, M., Leussler, C., Roschmann, P., Adam, G.: MR elastography of the breast: pre-liminary clinical results. Rofo-Fortschr Gebiet Rontgen-strahlen Bildgeb Verfahr 174(7), 830–834 (2002)

    Article  Google Scholar 

  32. Heywang-Kobrunner, S.H., Schreer, I., Heindel, W., Katalinic, A.: Imaging studies for the early detection of breast cancer. Dtsch. Arztebl. Int. 105, 541–U29 (2008)

    Google Scholar 

  33. McKnight, A.L., Kugel, J.L., Rossman, P.J., Manduca, A., Hartmann, L.C., Ehman, R.L.: MR elastography of breast cancer: Pre-liminary results. Am. J. Roentgenol 178(6), 1411–1417 (2002)

    Google Scholar 

  34. Sinkus, R., Siegmann, K., Xydeas, T., Tanter, M., Claussen, C., Fink, M.: MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Reson. Med. 58(6), 1135–1144 (2007)

    Article  Google Scholar 

  35. Sinkus, R., Tanter, M., Catheline, S., Lorenzen, J., Kuhl, C., Sondermann, E., Fink, M.: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn. Reson. Med. 53(2), 372–387 (2005)

    Article  Google Scholar 

  36. Sinkus, R., Tanter, M., Xydeas, T., Catheline, S., Bercoff, J., Fink, M.: Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn. Reson. Med. 23(2), 159–165 (2005)

    Google Scholar 

  37. Van Houten, E.E.W., Doyley, M.M., Kennedy, F.E., Weaver, J.B., Paulsen, K.D.: Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J. Magn. Reson. Imaging 17(1), 72–85 (2003)

    Article  Google Scholar 

  38. Sandrin, L., et al.: Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med. Biol. 29(12), 1705–1713 (2003)

    Article  Google Scholar 

  39. Bercoff, J., Chaffai, S., Tanter, M., Sandrin, L., Catheline, S., Fink, M., Gennisson, J.L., Meunier, M.: In vivo breast tumor detection using transient elastography. Ultrasound Med. Biol. 29(10), 1387–1396 (2003)

    Article  Google Scholar 

  40. Nightingale, K.R., Kornguth, P.J., Trahey, G.E.: The use of acoustic streaming in breast lesion diagnosis: A clinical study. Ultrasound Med. Biol. 25(1), 75–87 (1999)

    Article  Google Scholar 

  41. Nightingale, K.R., Palmeri, M.L., Nightingale, R.W., Trahey, G.E.: On the feasibility of remote palpation using acoustic radiation force. J. Acoust. Soc. Am. 110(1), 625–634 (2001)

    Article  Google Scholar 

  42. Bercoff, J., Pernot, M., Tanter, M., Fink, M.: Monitoring thermally-induced lesions with supersonic shear imaging. Ul-trason Imaging 26(2), 71–84 (2004)

    Google Scholar 

  43. Bercoff, J., Tanter, M., Fink, M.: Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396–409 (2004)

    Article  Google Scholar 

  44. Sarvazyan, A.P., Rudenko, O.V., Swanson, S.D., Fowlkes, J.B., Emelianov, S.Y.: Shear wave elasticity imaging: a new ultra-sonic technology of medical diagnostics. Ultrasound Med. Biol. 24(9), 1419–1435 (1998)

    Article  Google Scholar 

  45. Nightingale, K., Soo, M.S., Nightingale, R., Trahey, G.: Acoustic radiation force impulse imaging: In vivo demonstra-tion of clinical feasibility. Ultrasound Med. Biol. 28(2), 227–235 (2002)

    Article  Google Scholar 

  46. Tanter, M., Bercoff, J., Athanasiou, A., Deffieux, T., Gennisson, J.L., Montaldo, G., Muller, M., Tardivon, A., Fink, M.: Quantita-tive assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging. Ultrasound Med. Biol. 34(9), 1373–1386 (2008)

    Article  Google Scholar 

  47. Fatemi, M., Greenleaf, J.F.: Ultrasound-stimulated vibro-acoustic spectrography. Science 280, 82–85 (1998)

    Article  Google Scholar 

  48. Fatemi, M., Greenleaf, J.F.: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound Phys. Med. Biol. 45(6), 1449–1464 (2000)

    Article  Google Scholar 

  49. Alizad, A., Wold, L.E., Greenleaf, J.F., Fatemi, M.: Imaging mass lesions by vibro-acoustography: Modeling and experi-ments. IEEE Trans. Med. Imaging 23(9), 1087–1093 (2004)

    Article  Google Scholar 

  50. Greenleaf, J., Fatemi, M.: Vibro-acoustography: Speckle free ultrasonic imaging. Med. Phys. 34(6), 2527–2528 (2007)

    Article  Google Scholar 

  51. Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitratily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992)

    Article  Google Scholar 

  52. Alizad, A., Whaley, D.H., Greenleaf, J.F., Fatemi, M.: Image features in medical vibro-acoustography: In vitro and in vivo results. Ultrasonics 48(6–7), 559–562 (2008)

    Article  Google Scholar 

  53. Maleke, C., Pernot, M., Konofagou, E.E.: A Single-element focused ultrasound transducer method for harmonic motion imaging. Ultrason. Imaging 28(3), 144–158 (2006)

    Google Scholar 

  54. Konofagou, E.E., Hynynen, K.: Localized harmonic motion imaging: Theory, simulations and experiments. Ultrasound Med. Biol. 29(10), 1405–1413 (2003)

    Article  Google Scholar 

  55. Maleke, C., Luo, J.W., Gamarnik, V., Lu, X.L., Konofagou, E.E.: A simulation study of amplitude-modulated (AM) Harmonic Motion Imaging (HMI) for early detection and stiff-ness contrast quantification of tumors with experimental validation. Ultrason. Imaging 32, 154–176 (2010)

    Google Scholar 

  56. Maleke, C., Konofagou, E.E.: In Vivo Feasibility of Real-Time Monitoring of Focused Ultrasound Surgery (FUS) Using Harmonic Motion Imaging (HMI). IEEE Trans. Biomed. Eng. 57(1), 7–11 (2010)

    Article  Google Scholar 

  57. Vappou, J., Maleke, C., Konofagou, E.E.: Quantitative vis-coelastic parameters measured by Harmonic Motion Imaging. Phys. Med. Biol. 54(11), 3579–3594 (2009)

    Article  Google Scholar 

  58. Maleke, C., Konofagou, E.E.: Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues. Phys. Med. Biol. 53(6), 1773–1793 (2008)

    Article  Google Scholar 

  59. Izzo, F., Thomas, R., Delrio, P., Rinaldo, M., Vallone, P., DeChiara, A., Botti, G., D’Aiuto, G., Cortino, P., Curley, S.A.: Radiofrequency ablation in patients with primary breast carcinoma––A pilot study in 26 patients. Cancer 92, 2036–2044 (2001)

    Article  Google Scholar 

  60. Elliott, R.L., Rice, P.M., Suits, J.A., Ostrowe, J.A., Head, J.F.: Radiofrequency ablation of a stereotactically localized non-palpable breast carcinoma. Am. Surg. 68, 1–5 (2002)

    Google Scholar 

  61. Burak, W.E., et al.: Radiofrequency ablation of invasive breast carcinoma followed by delayed surgical excision. Cancer 98, 1369–1376 (2003)

    Article  Google Scholar 

  62. Hayashi, A.H., Silver, S.F., van der Westhuizen, N.G., Donald, J.C., Parker, C., Fraser, S., Ross, A.C., Olivotto, I.A.: Treatment of invasive breast carcinoma with ultrasound-guided radiofre-quency ablation. Am. J. Surg. 185, 429–435 (2003)

    Article  Google Scholar 

  63. Fornage, B.D., Sneige, N., Ross, M.I., Mirza, A.N., Kuerer, H.M., Edeiken, B.S., Ames, F.C., Newmanj, L.A., Bariera, G.V., Singletary, S.E.: Small (<= 2-cm) breast cancer treated with US-guided radiofrequency ablation: Feasibility study. Radiology 231, 215–224 (2004)

    Article  Google Scholar 

  64. Noguchi, M., Earashi, M., Fujii, H., Yokoyama, K., Harada, K.I., Tsuneyama, K.: Radiofrequency ablation of small breast cancer followed by surgical resection. J. Surg. Oncol. 93, 120–128 (2006)

    Article  Google Scholar 

  65. Kennedy, J.E.: High-intensity focused ultrasound in the treatment of solid tumours. Nature reviews cancer 5, 321–327 (2005)

    Article  Google Scholar 

  66. Shen, S.H., Fennessy, F., McDannold, N., Jolesz, F., Tempany, C.: Image-Guided Thermal Therapy of Uterine Fibroids. Semin. Ultrasound CT. 30(2), 91–104 (2009)

    Article  Google Scholar 

  67. Ter Haar, G.: Ultrasound focal beam surgery. Ultrasound Med. Biol. 21(9), 1089–1100 (1995)

    Article  Google Scholar 

  68. Huber, P.E., et al.: A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided fo-cused ultrasound surgery. Cancer Res. 61, 8441–8447 (2001)

    Google Scholar 

  69. Maleke, C., Nover, A., Joseph, K., Konofagou, E.E.: Human breast tumor mapping and assessment using harmonic mo-tion imaging (HMI) (2012) (under review)

    Google Scholar 

  70. Maleke, C., Pernot, M., Konofagou, E.E.: A Single-element focused transducer method for harmonic motion imaging. IEEE Symposium Ultrasonics Rotterdam, The Netherlands, pp. 17–20 (2005)

    Google Scholar 

  71. Céspedes, I., Huang, Y., Ophir, J., Sprat, S.: Methods for es-timation of subsample time delays of digitized echo signals. Ultrason. Imaging 17, 142–171 (1995)

    Article  Google Scholar 

  72. Hou, Y., Luo, J., Marquet, F., Maleke, C., Vappou, J., Konofagou, E.E.: Performance assessment of HIFU lesion detection By harmonic motion imaging for focused ultrasound (HMIFU): A 3-D finite-element-based framework with experimental validation. Ultrasound Med. Biol. (2012) (in press)

    Google Scholar 

  73. Hall, T.J., Bilgen, M., Insana, M.F., Krouskop, T.A.: Phantom materials for elastography. IEEE Trans. Ultrason. Ferroel. Freq. Cont. 44, 1355–1365 (1997)

    Article  Google Scholar 

  74. Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitratily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 39(2), 262–267 (1992)

    Article  Google Scholar 

  75. Wu, T., Felmlee, J.P., Greenleaf, J.F., Riederer, S.J., Ehman, R.L.: Assessment of thermal tissue ablation with MR elastography. Magn. Reson. Med. 45, 80–87 (2001)

    Article  Google Scholar 

  76. Heikkila, J., Hynynen, K.: Simulations of lesion detection using a combined phased array LHMI‐technique. Ultrasonics 48(6–7), 568–573 (2008)

    Article  Google Scholar 

  77. Heikkila, J., Curiel, L., Hynynen, K.: Local harmonic motion monitoring of focused ultrasound surgery--a simulation model. IEEE Trans. Biomed. Eng. 57, 185–193 (2010)

    Article  Google Scholar 

  78. Curiel, L., Chopra, R., Hynynen, K.: In vivo monitoring of focused ultrasound surgery using local harmonic motion. Ultrasound Med. Biol. 35, 65–78 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH R21EB008521. The authors also wish to thank Jianwen Luo, PhD from the Ultrasound and Elasticity Imaging Laboratory at Columbia for valuable discussions and Elizabeth Pile-Spellman, MD from the department of radiology of Columbia University for the mammogram and sonogram interpretation as well as providing the clinical perspectives for this study. The authors also thank Kathie-Ann Joseph, MD and Thomas Ludwig, PhD at Columbia University for their respective breast surgery and transgenic mouse model expertise and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa E. Konofagou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Konofagou, E.E., Maleke, C., Vappou, J. (2012). Harmonic Motion Imaging for Tumor Imaging and Treatment Monitoring. In: Payan, Y. (eds) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_124

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_124

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29013-8

  • Online ISBN: 978-3-642-29014-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics