Skip to main content

CamiTK: A Modular Framework Integrating Visualization, Image Processing and Biomechanical Modeling

  • Chapter
  • First Online:
Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

Abstract

In this paper, we present CamiTK, a specific modular framework that helps researchers and clinicians to collaborate in order to prototype Computer Assisted Medical Intervention (CAMI) applications by using the best knowledge and know-how during all the required steps. CamiTK is an open-source, cross-platform generic tool, written in C++, which can handle medical images, surgical navigations and biomechanical simulations. This paper first gives an overview of CamiTK core architecture and how it can be extended to fit particular scientific needs. The MML extension is then presented: it is an environment for comparing and evaluating soft-tissue simulation models and algorithms. Specifically designed as a soft-tissue simulation benchmark and a reference database for validation, it can compare models and algorithms built from different modeling techniques or biomechanical software. This article demonstrates the use of CamiTK on a textbook but complete example, where the medical image and MML extensions are collaborating in order to process and analyze MR brain images, reconstruct a patient-specific mesh of the brain, and simulate a basic brain-shift with different biomechanical models from ANSYS, SOFA and ArtiSynth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.commontk.org

  2. 2.

    http://www.w3.org/XML/Schema

  3. 3.

    http://www.codesynthesis.com/products/xsd

  4. 4.

    Videos of the different steps are available as supplementary material on http://camitk.imag.fr

  5. 5.

    http://tetgen.berlios.de

References

  1. Alterovitz, R., Goldberg, K.: Comparing algorithms for soft tissue deformation: accuracy metrics and benchmarks. Technical report, Alpha Lab, UC Berkeley (2002)

    Google Scholar 

  2. Chabanas, M., Promayon, E.: Physical model language: towards a unified representation for continuous and discrete models. LNCS 3078, 256–266 (2004)

    Google Scholar 

  3. Cornish-Bowden, A., Hunter, P., Cuellar, A., Mjolsness, E., Juty, N., Dronov, S., Takahashi, K., Nakayama, Y., Gilles, E., Kasberger, J. et al.: The systems biology markup language (sbml): A medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  4. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16(8), 437–452 (2000)

    Article  MATH  Google Scholar 

  5. Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., Cotin, S.: SOFA, a Multi-model framework for interactive physical simulation, chap. 11. Springer (2012)

    Google Scholar 

  6. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Professional (2003)

    Google Scholar 

  7. Hedley, W., Nelson, M., Bellivant, D., Nielsen, P.: A short introduction to cellml. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359(1783), 1073–1089 (2001)

    Article  MATH  Google Scholar 

  8. Lloyd, J.E., Stavness, I., Fels, S.: ArtiSynth: A fast interactive biomechanical modeling toolkit combining multibody and finite element simulation, chap. 13. Springer (2012)

    Google Scholar 

  9. Malandain, G.: Filtrage, topologie et mise en correspondance d’images médicales multidimensionnelles. Thèse de sciences, Ecole Centrale de Paris (1992)

    Google Scholar 

  10. Marchal, M., Allard, J., Duriez, C., Cotin, S.: Towards a framework for assessing deformable models in medical simulation. LNCS 5104, 176–184 (2008)

    Google Scholar 

  11. Nesme, M., Marchal, M., Promayon, E., Chabanas, M., Payan, Y., Faure, F.: Physically realistic interactive simulation for biological soft tissues. Recent Res. Dev. Biomech. (2) (2005)

    Google Scholar 

  12. Oberkampf, W., Trucano, T., Hirsch, C.: Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57, 345 (2004)

    Article  Google Scholar 

  13. Schiavone, P., Chassat, F., Boudou, T., Promayon, E., Valdivia, F., Payan, Y.: In vivo measurement of human brain elasticity using a light aspiration device. Medical Image Anal. 13(4), 673–678 (2009)

    Article  Google Scholar 

  14. Stromback, L., Hall, D., Lambrix, P.: A review of standards for data exchange within systems biology. Proteomics 7(6), 857–867 (2007)

    Article  Google Scholar 

  15. Toussaint, N., Sermesant, M., Fillard, P.: vtkinria3d: A vtk extension for spatiotemporal data synchronization vtkinria3d: A vtk extension for spatiotemporal data synchronization, visualization and management. In: Proceeding of Workshop on Open Source and Open Data for MICCAI (2007)

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of the French ministry of research (PhD grant) and of ECCAMI (Excellence Center for Computer Assisted Medical Interventions, http://www.eccami.com), a community of practice bringing together clinicians, researchers and manufacturers. CamiTK was build over many years and we wish to thank all the students, PhD students, researchers and engineers for their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Fouard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fouard, C., Deram, A., Keraval, Y., Promayon, E. (2012). CamiTK: A Modular Framework Integrating Visualization, Image Processing and Biomechanical Modeling. In: Payan, Y. (eds) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_118

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_118

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29013-8

  • Online ISBN: 978-3-642-29014-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics