Skip to main content

Patient-Specific Analysis of Blood Flow and Mass Transport in Small and Large Arteries

  • Chapter
  • First Online:
Patient-Specific Modeling in Tomorrow's Medicine

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 09))

  • 1691 Accesses

Abstract

Recent advances in medical image-based computational modelling have made it possible for patient-specific analysis of blood flow and mass transport in the circulation. In this chapter, we describe mathematical models for (1) flow and transport of macromolecules in large arteries, and (2) flow and oxygen delivery in an arteriolar network. Detailed examples are given of mass transport in specific cases, including applications to atherosclerotic arteries and microvascular network. The first example shows transport of a large molecule, low-density lipoprotein, in a human right coronary artery with a mild stenosis, whilst the second is about a small dissolved molecule, oxygen, in an abdominal aortic aneurysm illustrating the effect of intraluminal thrombus. Finally, the additional effects of non-Newtonian properties of blood and haemoglobin-bound oxygen on oxygen transport in the retinal arteriolar network of normal and hypertensive subjects are described. Patient-specific geometries obtained by means of a variety of imaging techniques are used in these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adolph, R., Vorp, A.D., Steed, D.L., Webster, M.W., Kameneva, M.V., Watkins, S.C.: Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25, 916–926 (1997)

    Article  Google Scholar 

  2. Ariff, B.B., Glor, F.P., Crowe, L., Xu, X.Y., Vennart, W., Firmin, D.N., Thom, S.M., Hughes, A.D.: Carotid artery hemodynamics: observing patient-specific changes with amlodipine and lisinopril by using MR imaging computation fluid dynamics. Radiology 257, 662–669 (2010)

    Article  Google Scholar 

  3. Augst, A.D., Ariff, B., Thom, S.A.G., Xu, X.Y., Hughes, A.D.: Analysis of complex flow and the relationship between blood pressure, wall shear stress, anmd intima-media thickness in the human carotid artery. Am. J. Physiol. Heart Circ. Physiol. 293, 1031–1037 (2007)

    Article  Google Scholar 

  4. Beach, J.M., Schwenzer, K.J., Srinivas, S., Kim, D., Tiedeman, J.S.: Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J. Appl. Physiol. 86, 748–758 (1999)

    Google Scholar 

  5. Birol, G., Wang, S., Budzynski, E., Wangsa-Wirawan, N.D., Linsenmeier, R.A.: Oxygen distribution and consumption in the macaque retina. Am. J. Physiol. Heart Circ. Physiol. 293, H1696–H1704 (2007)

    Article  Google Scholar 

  6. Borghi, A., Wood, N.B., Mohiaddin, R.H., Xu, X.Y.: 3D geometric reconstruction of thoracic aortic aneurysms. BioMed. Eng. OnLine 5(59), 1–13 (2006)

    Google Scholar 

  7. Buerk, D.G., Goldstick, T.K.: Arterial wall oxygen consumption rate varies spatially. Am. J. Physiol. Heart Circ. Physiol. 243, H948–H995 (1982)

    Google Scholar 

  8. Buerk, D.G., Shonat, R.D., Riva, C.E., Cranstoun, S.D.: O2 gradients and countercurrent exchange in the cat vitreous humor near retinal arterioles and venules. Microvasc. Res. 45, 134–148 (1993)

    Article  Google Scholar 

  9. Bushong, S.C.: Magnetic Resonance Imaging: Physical and Biological Principles, 3rd edn. Mosby, St Louis MI (2003)

    Google Scholar 

  10. Caro, C.G., Fitz-Gerald, J.M., Schroter, R.C.: Atheroma and arterial wall shear-dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. London B177, 109–159 (1971)

    Article  Google Scholar 

  11. Cebral, J.R., Lohner, R.: Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans. Med. Imaging 24, 468–476 (2005)

    Article  Google Scholar 

  12. Cebral, J.R., Yim, P.J., Löhner, R., Soto, O., Choyke, P.L.: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9, 1286–1299 (2002)

    Article  Google Scholar 

  13. Chang, K., Weiss, D., Suo, J., Vega, J.D., Giddens, D., Taylor, W.R., Jo, H.: Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Circulation 116, 1258–1266 (2007)

    Article  Google Scholar 

  14. Cheng, Z., Tan, F.P.P., Riga, C.V., Bicknell, C.D., Hamady, M.S., Gibbs, R.G.J., Wood, N.B., Xu, X.Y.: Analysis of flow patterns in a patient-specific aortic dissection model. J. Biomech. Eng. 132, 051007 (2010)

    Article  Google Scholar 

  15. Cringle, S.J., Yu, D.Y., Yu, P.K., Su, E.N.: Intraretinal oxygen consumption in the rat in vivo. Invest. Ophthalmol. Vis. Sci. 43, 1922–1927 (2002)

    Google Scholar 

  16. Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995)

    Google Scholar 

  17. Delori, F.C.: Noninvasive technique for oximetry of blood in retinal vessels. Appl. Opt. 27, 1113–1125 (1998)

    Article  Google Scholar 

  18. Dorner, G.T., Polska, E., Garhofer, G., Zawinka, C., Frank, B., Schmetterer, L.: Calculation of the diameter of the central retinal artery from noninvasive measurements in humans. Curr. Eye Res. 25, 341–345 (2002)

    Article  Google Scholar 

  19. Groen, H., Gijsen, F., van der Lugt, A., Ferguson, M., Hatsukami, T., van der Steen, A.F.W., Yuan, C., Wentzel, J.J.: Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 38, 2379–2381 (2007)

    Article  Google Scholar 

  20. Iftimia, N.V., Hammer, D.X., Bigelow, C.E., Rosen, D.I., Ustun, T., Ferrante, A.A., Vu, D., Ferguson, R.D.: Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking. Opt. Express 14, 3377–3388 (2006)

    Article  Google Scholar 

  21. Jackson, M., Wood, N.W., Zhao, S., Augst, A., Wolfe, J.H., Gedroyc, W.M.W., Hughes, A.D., Thom, S.A.M., Xu, X.Y.: Low wall shear stress predicts subsequent development of wall hypertrophy in lower limb bypass grafts. Artery Res. 3, 32–38 (2009)

    Article  Google Scholar 

  22. Kalender, W.A.: Computed Tomography: Fundamentals, System Technology Image Quality Applications. Publicis, Erlangen (2005)

    Google Scholar 

  23. Kalender, W.A.: X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006)

    Article  Google Scholar 

  24. Karner, G., Perktold, K., Zehentner, H.P.: Computational modeling of macromolecule transport in the arterial wall. Comput. Meth. Biomech. Biomed. Eng. 4, 491–504 (2001)

    Article  Google Scholar 

  25. Kedem, O., Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246 (1958)

    Article  Google Scholar 

  26. Kilner, P.J., Henein, M.Y., Gibson, D.G.: Our tortuous heart in dynamic mode–an echocardiographic study of mitral flow and movement in exercising subjects. Heart Vessels 12, 103–110 (1997)

    Article  Google Scholar 

  27. Kudo, S., Ikezawa, K., Matsumura, S., Ikeda, M., Oka, K., Tanishita, K.: Effect of wall shear stress on macromolecule uptake into culyured endothelial cells. Tran. Jpn. Soc. Mech. Eng. Ser. B 64, 367–374 (1998)

    Article  Google Scholar 

  28. Lee, K.W., Wood, N.B., Xu, X.Y.: Ultrasound image-based computer model of a common carotid artery with a plaque. Med. Eng. Phys. 26, 823–840 (2004)

    Article  Google Scholar 

  29. Lehoux, S., Castier, Y., Tedgui, A.: Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259, 381–392 (2006)

    Article  Google Scholar 

  30. Leung, J.H.: Determination of flow patterns and stresses in patient-specific models of abdominal aortic aneurysm. PhD Thesis, Imperial College London, UK (2006)

    Google Scholar 

  31. Leung, J.H., Wright, A.R., Cheshire, N., Crane, J., Thom, S.A., Hughes, A.D., Xu, X.Y.: Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. BioMed. Eng. OnLine 5(33), 1–15 (2006)

    Google Scholar 

  32. Levick, J.R.: An Introduction to Cardiovascular Physiology, 5th edn. Hodder Arnold, London (2010)

    Google Scholar 

  33. Linsenmeier, R.A., Braun, R.D.: Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J. Gen. Physiol. 99, 177–197 (1992)

    Article  Google Scholar 

  34. Liu, D., Wood, N.B., Witt, N., Hughes, A.D., Thom, S.A., Xu, X.Y.: Computational analysis of oxygen transport in the retinal arterial network. Curr. Eye Res. 34, 945–956 (2009)

    Article  Google Scholar 

  35. Long, Q., Xu, X.Y., Bourne, M., Griffith, T.M.: Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn. Reson. Med. 43, 565–576 (2000)

    Article  Google Scholar 

  36. Lotz, J., Meier, C., Leppert, A., Galanski, M.: Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22, 651–671 (2002)

    Google Scholar 

  37. Malek, A.M., Alper, S.L., Izumo, S.: Hemodynamic shear stress and its role in atherosclerosis. JAMA 282, 2035–2042 (1999)

    Article  Google Scholar 

  38. Marshall, I., Zhao, S.Z., Papathanasopoulou, P., Hoskins, P., Xu, X.Y.: MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37, 679–687 (2004)

    Article  Google Scholar 

  39. Martinez-Perez, M.E., Hughes, A.D., Stanton, A.V., Thom, S.A., Chapman, N., Bharath, A.A., Parker, K.H.: Retinal vascular tree morphology: a semi-automatic quantification. IEEE Trans. Biomed. Eng. 49, 912–917 (2000)

    Article  Google Scholar 

  40. Mayrovitz, H.N., Roy, J.: Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter. Am. J. Physiol. Heart Circ. Physiol. 245, H1031–H1038 (1983)

    Google Scholar 

  41. McRobbie, D.W., Moore, E.A., Graves, M.J., Prince, M.R.: MRI from Picture to Proton, 2nd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  42. Mendivil, A., Cuartero, V., Mendivil, M.P.: Ocular blood flow velocities in patients with proliferative diabetic retinopathy and healthy volunteers: a prospective study. Br. J. Ophthalmol. 79, 413–416 (1995)

    Article  Google Scholar 

  43. Meyer, G., Merval, R., Tedgui, A.: Effects of pressure-induced stretch and convection on low-density lipoprotein and albumin uptake in the rabbit aortic wall. Circ. Res. 79, 532–540 (1996)

    Google Scholar 

  44. Milner, J.S., Moore, J.A., Rutt, B.K., Steinman, D.A.: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28, 143–156 (1998)

    Article  Google Scholar 

  45. Moore, J.A., Ethier, C.R.: Oxygen mass transfer calculations in large arteries. J. Biomech. Eng. 119, 469–475 (1997)

    Article  Google Scholar 

  46. Morris, L., Delassus, P., Walsh, M., McGloughlin, T.: A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA). J. Biomech. 37, 1087–1095 (2004)

    Article  Google Scholar 

  47. Nissen, S.E., Yock, P.: Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103, 604–616 (2001)

    Google Scholar 

  48. O’Brien, K.R., Myerson, S.G., Cowan, B.R., Young, A.A., Robson, M.D.: Phase contrast ultrashort TE: a more reliable technique for measurement of high-velocity turbulent stenotic jets. Magn. Reson. Med. 62, 626–636 (2009)

    Article  Google Scholar 

  49. Papathanasopoulou, P., Zhao, S., Köhler, U., Robertson, M.B., Long, Q., Hoskins, P., Xu, X.Y., Marshall, I.: MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging 17, 153–162 (2003)

    Article  Google Scholar 

  50. Pope, J.: Medical Physics: Imaging. Heinemann, Oxford (1999)

    Google Scholar 

  51. Pries, A.R., Secomb, T.W., Gaehtgens, P., Gross, J.F.: Blood flow in microvascular networks - experiments and simulation. Circ. Res. 67, 826–834 (1990)

    Google Scholar 

  52. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32, 654–667 (1996)

    Google Scholar 

  53. Rappitsch, G., Perktold, K.: Computer simulation of convective diffusion processes in large arteries. J. Biomech. 29, 207–215 (1996)

    Article  Google Scholar 

  54. Shojima, M., Oshima, M., Takagi, K., Torii, R., Nagata, K., Shirouzu, I., Morita, A., Kirino, T.: Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36, 1933–1938 (2005)

    Article  Google Scholar 

  55. Sill, H.W., Chang, Y.S., Artman, J.R., Frangos, J.A., Hollis, T.M., Tarbell, J.M.: Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. 268, H535–H543 (1995)

    Google Scholar 

  56. Slager, C.J., Wentzel, J.J., Schuurbiers, J.C., Oomen, J.A., Kloet, J., Krams, R., von Birgelen, C., van der Giessen, W.J., Serruys, P.W., de Feyter, P.J.: True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102, 511–516 (2000)

    Google Scholar 

  57. Slager, C., Wentzel, J.J., Gijsen, F.J.H., Schuurbiers, J.C.H., van der Wal, A.C., van der Steen, A.F.W., Serruys, P.W.: The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Clin. Pract. Cardiovasc. Med. 2, 401–407 (2005)

    Article  Google Scholar 

  58. Slager, C.J., Wentzel, J.J., Gijsen, F.J.H., Thury, A., van der Wal, A.C., Schaar, J.A., Serruys, P.W.: The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat. Clin. Pract. Cardiovasc. Med 2, 456–464 (2005)

    Article  Google Scholar 

  59. Soloperto, G., Keenan, N.G., Sheppard, M.N., Ohayon, J., Wood, N.B., Pennell, D.J., Mohiaddin, R.H., Xu, X.Y.: Combined imaging, computational and histological analysis of a ruptured carotid plaque: a patient-specific analysis. Artery Res. 4, 59–65 (2010)

    Article  Google Scholar 

  60. Stanton, A.V., Wasan, B., Cerutti, A., Ford, S., Marsh, R., Sever, P.P., Thom, S.A., Hughes, A.D.: Vascular network changes in the retina with age and hypertension. J. Hypertens. 13, 1724–1728 (1995)

    Article  Google Scholar 

  61. Starmans-Kool, M.J., Stanton, A.V., Zhao, S., Xu, X.Y., Thom, S.A., Hughes, A.D.: Measurement of hemodynamics in human carotid artery using ultrasound and computational fluid dynamics. J. Appl. Physiol. 92, 957–961 (2002)

    Google Scholar 

  62. Steinman, D.A.: Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30, 483–497 (2002)

    Article  Google Scholar 

  63. Sun, N., Leung, J.H., Wood, N.B., Hughes, A.D., Thom, S.A., Cheshire, N.J., Xu, X.Y.: Computational analysis of oxygen transport in a patient-specific model of abdominal aortic aneurysm with intraluminal thrombus. Br. J. Radiol. 82(1), S18–S23 (2009a)

    Google Scholar 

  64. Sun, N., Torii, R., Wood, N.B., Hughes, A.D., Thom, S.A., Xu, X.Y.: Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery. J. Biomech. Eng. 131, 021003-1-9 (2009b)

    Google Scholar 

  65. Sun, N., Wood, N.B., Hughes, A.D., Thom, S.A., Xu, X.Y.: Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Ann. Biomed. Eng. 34, 1119–1128 (2006)

    Article  Google Scholar 

  66. Sun, N., Sun, N., Wood, N.B., Hughes, A.D., Thom, S.A., Xu, X.Y.: Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am. J. Physiol. Heart. Circ. Physiol. 292, H3148–H3157 (2007a)

    Article  Google Scholar 

  67. Sun, N., Wood, N.B., Hughes, A.D., Thom, S.A., Xu, X.Y.: Influence of pulsatile flow on LDL transport in the arterial wall. Ann. Biomed. Eng. 35, 1782–1790 (2007b)

    Article  Google Scholar 

  68. Swedenborg, J., Eriksson, P.: The intraluminal thrombus as a source of proteolytic activity. Ann. NY. Acad. Sci. 1085, 133–138 (2006)

    Article  Google Scholar 

  69. Tan, F.P.P., Soloperto, G., Bashford, S., Wood, N.B., Thom, S., Hughes, A., Xu, X.Y.: Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models. J. Biomech. Eng. 130, 061008-1-12 (2008)

    Google Scholar 

  70. Tan, F.P.P., Wood, N.B., Tabot, G.R., Xu, X.Y.: Comparison of LES of steady transitional flow in an idealized Stenosed Axisymmetric Artery model with a RANS transitional model. J. Biomech. Eng. 133, 051001-1-12 (2011)

    Google Scholar 

  71. Tan, F.P.P., Torii, R., Borghi, A., Mohiaddin, R.H., Wood, N.B., Xu, X.Y.: Fluid-structure interaction analysis of wall stress and flow patterns in a thoracic aortic aneurysm. Int. J. Appl. Mech. 1, 179–199 (2009)

    Article  Google Scholar 

  72. Tang, D., Yang, C., Zheng, J., Woodard, P.K., Saffitz, J.E., Sicard, G.A., Pilgram, T.K., Yuan, C.: Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J. Biomech. Eng. 127, 1185–1194 (2005)

    Article  Google Scholar 

  73. Tang, T.Y., Muller, K.H., Graves, M.J., Li, Z.Y., Walsh, S.R., Young, V., Sadat, U., Howarth, S.P., Gillard, J.H.: Iron oxide particles for atheroma imaging. Arterioscler. Thromb. Vasc. Biol. 29, 1001–1008 (2009)

    Article  Google Scholar 

  74. Tarbell, J.M.: Mass transport in arteries and the localization of atherosclerosis. Ann. Rev. Biomed. Eng. 5, 79–118 (2003)

    Article  Google Scholar 

  75. Taylor, C.A., Figueroa, C.A.: Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  76. Taylor, C.A., Draney, M.T., Ku, J.P., Parker, D., Steele, B.N., Wang, K., Zarins, C.K.: Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4, 231–247 (1999)

    Article  Google Scholar 

  77. Thorne, M.L., Rankin, R.N., Steinman, D.A., Holdsworth, D.W.: In vivo Doppler ultrasound quantification of turbulence intensity using a high-pass frequency filter method. Ultrasound Med. Biol. 36, 761–771 (2010)

    Article  Google Scholar 

  78. Torii, R., Wood, N.B., Hadjiloizou, N., Dowsey, A.W., Wright, A.R., Hughes, A.D., Davies, J., Francis, D.P., Mayet, J., Yang, G.Z., Thom, S.A., Xu, X.Y.: Stress phase angle depicts differences in coronary artery hemodynamics due to changes in flow and geometry after percutaneous coronary intervention. Am. J. Physiol. Heart Circ. Physiol. 296, 65–76 (2009)

    Article  Google Scholar 

  79. Varghese, S.S., Frankel, S.H., Fisher, P.F.: Modeling transition to turbulence in eccentric stenotic flows. ASME J. Biomech. Eng. 130, 014503-1-7 (2008)

    Google Scholar 

  80. Vorp, D.A.: Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 1887–1902 (2007)

    Article  Google Scholar 

  81. Vorp, D.A., Vande Geest, J.P.: Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vasc. Biol. 25, 1558–1566 (2005)

    Article  Google Scholar 

  82. Wang, L., Tornquist, P., Bill, A.: Glucose metabolism of the inner retina in pigs in darkness and light. Acta Physiol. Scand. 160, 71–74 (1997)

    Google Scholar 

  83. Wang, Y., Bower, B.A., Izatt, J.A., Tan, O., Huang, D.: In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 12, 041215 (2007)

    Article  Google Scholar 

  84. Wentzel, J.J., Corti, R., Fayad, Z.A., et al.: Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J. Am. Coll. Cardiol. 45, 846–854 (2005)

    Article  Google Scholar 

  85. Wilson, N.M., Arko, F.R., Taylor, C.A.: Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease. Comput. Aided Surg. 10, 257–277 (2005)

    Google Scholar 

  86. Wolters, B.J.B.M., Rutten, M.C.M., Schurink, G.W.H., Kose, U., de Hart, J., van de Vosse, F.N.: A patient-specific computational model of fluid0structure interaction in abdominal aortic aneurysms. Med. Eng. Phys. 27, 871–883 (2005)

    Article  Google Scholar 

  87. Wong, T.Y., McIntosh, R.: Systemic associations of retinal microvascular signs: a review of recent population-based studies. Ophthalmic Physiol. Opt. 25, 195–204 (2005)

    Article  Google Scholar 

  88. Wood, N.B., Weston, S.J., Kilner, P.J., Gosman, A.D., Firmin, D.N.: Combined MR imaging and CFD simulation of flow in the human descending aorta. J. Magn. Reson. Imaging 13, 699–713 (2001)

    Article  Google Scholar 

  89. Wood, N.B., Zhao, S.Z., Zambanini, A., Jackson, M., Gedroyc, W., Thom, S.A., Hughes, A.D., Xu, X.Y.: Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral vascular disease. J. Appl. Physiol. 101, 1412–1418 (2006)

    Article  Google Scholar 

  90. Xu, X.Y., Long, Q., Collins, M.W., Bourne, M., Griffith, T.M.: Reconstruction of blood flow patterns in human arteries. Proc. Inst. Mech. Eng. H. 213, 411–421 (1999)

    Article  Google Scholar 

  91. Xu, X.Y., Borghi, A., Nchimi, A., Leung, J., Gomez, P., Cheng, Z., Defraigne, J.O., Sakalihasan, N.: High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur. J. Vasc. Endovasc. Surg. 39, 295–301 (2010)

    Article  Google Scholar 

  92. Yu, D.Y., Cringle, S.J., Su, E.: Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperxia. Invest. Ophthalmol. Vis. Sci. 46, 4728–4733 (2005)

    Article  Google Scholar 

  93. Yuan, C., Hatsukami, T.: Chapter 23: MR plaque imaging. In: Gillard, J., Graves, M., Hatsukami, T., Yuan, C. (eds.) Carotid Disease: The Role of Imaging in Diagnosis and Management. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  94. Zhao, S.Z., Ariff, B., Long, Q., Thom, S.A., Hughes, A.D., Xu, X.Y.: Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech. 35, 1367–1377 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following people who have contributed to the data used here: Drs J. Leung, R. Torii, N. Witt, A. Wright, Professors A.D. Hughes and S.A. Thom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, X.Y., Sun, N., Liu, D., Wood, N.B. (2011). Patient-Specific Analysis of Blood Flow and Mass Transport in Small and Large Arteries. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_95

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_95

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics