Skip to main content

Patient Specific Modeling of Musculoskeletal Fractures

  • Chapter
  • First Online:
Patient-Specific Modeling in Tomorrow's Medicine

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 09))

  • 1633 Accesses

Abstract

Choosing and executing an optimal treatment plan for skeletal fractures in clinical practice is a complex procedure. Treatment decisions are often qualitative, based on general guidelines and experience/training of the orthopedic surgeons. Despite its potential to assist in quantifying fracture fixation and thus improve patient outcome, computational patient-specific modeling for selection and planning of fracture treatments is limited at present. During the past 25 years extensive work has been reported regarding patient specific finite element (FE) based modeling. Numerous studies have reported on the development, validation and automation of patient specific FE modeling techniques from quantitative CT data sets. However, a patient specific quantitative process that can be applied in a true clinical environment must cope with profound uncertainties such as; material property assignments, surface geometry and most of all uncertainty of in vivo load amplitudes and gait patterns which are usually only roughly estimated. In this chapter we review common techniques of patient specific modeling of bony structures, and present known limitations and sources of error. Method and experimental validation of a new CT based workflow for patient specific modeling of fracture fixation implementing principal strain ratios is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrechtsen, J., Hede, J., Jurik, A.G.: Pelvic fractures. Assessment by conventional radiography and CT. Acta Radiologica (Stockholm, Sweden : 1987) 35, 420–425 (1994)

    Google Scholar 

  2. Audige, L., Bhandari, M., Hanson, B., Kellam, J.: A concept for the validation of fracture classifications. J. Orthopaedic Trauma 19, 401–406 (2005)

    Google Scholar 

  3. Barker, D.S., Netherway, D.J., Krishnan, J., Hearn, T.C.: Validation of a finite element model of the human metacarpal. Med. Eng. Phys. 27, 103–113 (2005)

    Article  Google Scholar 

  4. Baumgaertner, M.R., Curtin, S.L., Lindskog, D.M.: Intramedullary versus extramedullary fixation for the treatment of intertrochanteric hip fractures. Clinical Orthopaedics and Related Research 348, 87–94 (1998)

    Google Scholar 

  5. Baumgaertner, M.R., Curtin, S.L., Lindskog, D.M., Keggi, J.M.: The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J. Bone Joint Surg. Am. Volume 77, 1058–1064 (1995)

    Google Scholar 

  6. Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, T.M.: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37, 27–35 (2004)

    Article  Google Scholar 

  7. Behrens, B.A., Wirth, C.J., Windhagen, H., Nolte, I., Meyer-Lindenberg, A., Bouguecha, A.: Numerical investigations of stress shielding in total hip prostheses. Proc. Inst. Mech. Engrs. Part H, J. Eng. Med. 222, 593–600 (2008)

    Article  Google Scholar 

  8. Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K.: Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40, 1745–1753 (2007)

    Article  Google Scholar 

  9. Bitsakos, C., Kerner, J., Fisher, I., Amis, A.A.: The effect of muscle loading on the simulation of bone remodelling in the proximal femur. J. Biomech. 38, 133–139 (2005)

    Article  Google Scholar 

  10. Carter, D.R.: Mechanical loading histories and cortical bone remodeling. Calcified Tissue Int. 36(Suppl 1), S19–S24 (1984)

    Article  Google Scholar 

  11. Carter, D.R., Hayes, W.C.: The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. Am. Volume 59, 954–962 (1977)

    Google Scholar 

  12. Chmelova, J., Sir, M., Jecminek, V.: CT-guided percutaneous fixation of pelvic fractures. Case reports. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, vol. 149, pp 177–181 (2005)

    Google Scholar 

  13. Cody, D.D., Gross, G.J., Hou, F.J., Spencer, H.J., Goldstein, S.A., Fyhrie, D.P.: Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32, 1013–1020 (1999)

    Article  Google Scholar 

  14. Cowin, S.C., Hart, R.T., Balser, J.R., Kohn, D.H.: Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients. J. Biomech. 18, 665–684 (1985)

    Article  Google Scholar 

  15. Dalstra, M., Huiskes, R., Odgaard, A., van Erning, L.: Mechanical and textural properties of pelvic trabecular bone. J. Biomech. 26, 523–535 (1993)

    Article  Google Scholar 

  16. Davis, T.R., Sher, J.L., Horsman, A., Simpson, M., Porter, B.B., Checketts, R.G.: Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J. Bone Joint Surg. Br. Volume 72, 26–31 (1990)

    Google Scholar 

  17. Dock, W., Grabenwoger, F., Schratter, M., Farres, M.T., Kwasny, O.: Diagnosis of pelvic fractures: synoptic views of the pelvis versus CT]. RoFo : fortschritte Auf Dem Gebiete Der Rontgenstrahlen Und Der Nuklearmedizin 150, 280–283 (1989)

    Article  Google Scholar 

  18. Duane, T.M., Dechert, T., Wolfe, L.G., Brown, H., Aboutanos, M.B., Malhotra, A.K., Ivatury, R.R.: Clinical examination is superior to plain films to diagnose pelvic fractures compared to CT. The American Surgeon 74, 476–479 (2008)

    Google Scholar 

  19. Falchi, M., Rollandi, G.A.: CT of pelvic fractures. Eur. J. Radiol. 50, 96–105 (2004)

    Article  Google Scholar 

  20. Ford, C.M., Keaveny, T.M.: The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J. Biomech. 29, 1309–1317 (1996)

    Article  Google Scholar 

  21. Gross, S., Abel, E.W.: A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J. Biomech. 34, 995–1003 (2001)

    Article  Google Scholar 

  22. Hansen Jr, S.T.: CT for pelvic fractures. AJR. Am. J. Roentgenology 138, 592–593 (1982)

    Google Scholar 

  23. Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjolfsson, S., Viceconti, M.: Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. (Bristol, Avon) 23, 135–146 (2008)

    Article  Google Scholar 

  24. Helgason, B., Taddei, F., Palsson, H., Schileo, E., Cristofolini, L., Viceconti, M., Brynjolfsson, S.: A modified method for assigning material properties to FE models of bones. Med. Eng. Phys. 30, 444–453 (2008)

    Article  Google Scholar 

  25. Hill, A.V.: The maximum work and mechanical efficiency of human muscles, and their most economical speed. J. Physiol. 56, 19–41 (1922)

    Google Scholar 

  26. Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B., Slooff, T.J.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20, 1135–1150 (1987)

    Article  Google Scholar 

  27. Keaveny, T.M., Borchers, R.E., Gibson, L.J., Hayes, W.C.: Trabecular bone modulus and strength can depend on specimen geometry. J. Biomech. 26, 991–1000 (1993)

    Article  Google Scholar 

  28. Keller, T.S.: Predicting the compressive mechanical behavior of bone. J. Biomech. 27, 1159–1168 (1994)

    Article  Google Scholar 

  29. Keyak, J.H., Falkinstein, Y.: Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med. Eng. Phys. 25, 781–787 (2003)

    Article  Google Scholar 

  30. Keyak, J.H., Fourkas, M.G., Meagher, J.M., Skinner, H.B.: Validation of an automated method of three-dimensional finite element modelling of bone. J. Biomed. Eng. 15, 505–509 (1993)

    Article  Google Scholar 

  31. Keyak, J.H., Meagher, J.M., Skinner, H.B., Mote Jr, C.D.: Automated three-dimensional finite element modelling of bone: a new method. J. Biomed. Eng. 12, 389–397 (1990)

    Article  Google Scholar 

  32. Keyak, J.H., Rossi, S.A., Jones, K.A., Les, C.M., Skinner, H.B.: Prediction of fracture location in the proximal femur using finite element models. Med. Eng. Phys. 23, 657–664 (2001)

    Article  Google Scholar 

  33. Keyak, J.H., Rossi, S.A., Jones, K.A., Skinner, H.B.: Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31, 125–133 (1998)

    Article  Google Scholar 

  34. Killeen, K.L., DeMeo, J.H.: CT detection of serious internal and skeletal injuries in patients with pelvic fractures. Academic Radiol. 6, 224–228 (1999)

    Article  Google Scholar 

  35. Lang, T.F., Keyak, J.H., Heitz, M.W., Augat, P., Lu, Y., Mathur, A., Genant, H.K.: Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21, 101–108 (1997)

    Article  Google Scholar 

  36. Les, C.M., Keyak, J.H., Stover, S.M., Taylor, K.T., Kaneps, A.J.: Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. J Orthopaedic Res.: Off. Pub. Orthopaedic Res. Soc. 12, 822–833 (1994)

    Google Scholar 

  37. Lotz, J.C., Gerhart, T.N., Hayes, W.C.: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J. Comput. Assist. Tomogr. 14, 107–114 (1990)

    Article  Google Scholar 

  38. Luria, S., Hoch, S., Liebergall, M., Mosheiff, R., Peleg, E.: Optimal fixation of acute scaphoid fractures: finite element analysis. J. Hand Surg. 35, 1246–1250 (2010)

    Article  Google Scholar 

  39. Martos, J., Bohar, L., Fekete, G.: Three-dimensional CT studies of pelvic fractures]. Magyar Traumatologia, Orthopaedia Es Helyreallito Sebeszet 35, 116–119 (1992)

    Google Scholar 

  40. Merz, B., Niederer, P., Muller, R., Ruegsegger, P.: Automated finite element analysis of excised human femora based on precision -QCT. J. Biomech. Eng. 118, 387–390 (1996)

    Article  Google Scholar 

  41. Morgan, E.F., Bayraktar, H.H., Keaveny, T.M.: Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003)

    Article  Google Scholar 

  42. Morgan, E.F., Keaveny, T.M.: Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 34, 569–577 (2001)

    Article  Google Scholar 

  43. Pappas, G.P., Asakawa, D.S., Delp, S.L., Zajac, F.E., Drace, J.E.: Nonuniform shortening in the biceps brachii during elbow flexion. J. Appl. Physiol. (Bethesda, Md.: 1985) 92, 2381–2389 (2002)

    Google Scholar 

  44. Peck, C.C., Hannam, A.G.: Human jaw and muscle modelling. Arch. Oral Biol. 52, 300–304 (2007)

    Article  Google Scholar 

  45. Peleg, E., Beek, M., Joskowicz, L., Liebergall, M., Mosheiff, R., Whyne, C.: Patient specific quantitative analysis of fracture fixation in the proximal femur implementing principal strain ratios. Method and experimental validation. J. Biomech. 43, 2684–2688 (2010)

    Article  Google Scholar 

  46. Pettersen, S.H., Wik, T.S., Skallerud, B.: Subject specific finite element analysis of stress shielding around a cementless femoral stem. Clin. Biomech. (Bristol, Avon) 24, 196–202 (2009)

    Article  Google Scholar 

  47. Rajon, D.A., Bolch, W.E.: Marching cube algorithm: review and trilinear interpolation adaptation for image-based dosimetric models. Computerized Med. Imaging Graphics : Off. J. Computerized Med. Imaging Soc. 27, 411–435 (2003)

    Article  Google Scholar 

  48. Reggiani, B., Cristofolini, L., Varini, E., Viceconti, M.: Predicting the subject-specific primary stability of cementless implants during pre-operative planning: preliminary validation of subject-specific finite-element models. J. Biomech. 40, 2552–2558 (2007)

    Article  Google Scholar 

  49. Robertson, D.D., Sutherland, C.J., Chan, B.W., Hodge, J.C., Scott, W.W., Fishman, E.K.: Depiction of pelvic fractures using 3D volumetric holography: comparison of plain X-ray and CT. J. Comput. Assist. Tomogr. 19, 967–974 (1995)

    Article  Google Scholar 

  50. Ruimerman, R., Hilbers, P., van Rietbergen, B., Huiskes, R.: A theoretical framework for strain-related trabecular bone maintenance and adaptation. J. Biomech. 38, 931–941 (2005)

    Article  Google Scholar 

  51. Schileo, E., Dall’ara, E., Taddei, F., Malandrino, A., Schotkamp, T., Baleani, M., Viceconti, M.: An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J. Biomech. 41, 2483–2491 (2008)

    Article  Google Scholar 

  52. Schileo, E., Taddei, F., Cristofolini, L., Viceconti, M.: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 41, 356–367 (2008)

    Article  Google Scholar 

  53. Schileo, E., Taddei, F., Malandrino, A., Cristofolini, L., Viceconti, M.: Subject-specific finite element models can accurately predict strain levels in long bones. J. Biomech. 40, 2982–2989 (2007)

    Article  Google Scholar 

  54. Seral, B., Garcia, J.M., Cegonino, J., Doblare, M., Seral, F.: Finite element study of intramedullary osteosynthesis in the treatment of trochanteric fractures of the hip: Gamma and PFN. Injury 35, 130–135 (2004)

    Article  Google Scholar 

  55. Stojanovic, B., Kojic, M., Rosic, M., Tsui, C.P., Tang, C.Y.: An extension of Hill's three-component model to include different fiber types in finite element modelling of muscle. Int. J. Num. Meth. Eng. 71, 801–817 (2007)

    Google Scholar 

  56. Taddei, F., Martelli, S., Reggiani, B., Cristofolini, L., Viceconti, M.: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties. IEEE Trans. Bio-Med. Eng. 53, 2194–2200 (2006)

    Article  Google Scholar 

  57. Taddei, F., Pancanti, A., Viceconti, M.: An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med. Eng. Phys. 26, 61–69 (2004)

    Article  Google Scholar 

  58. Taddei, F., Schileo, E., Helgason, B., Cristofolini, L., Viceconti, M.: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med. Eng. Phys. 29, 973–979 (2007)

    Article  Google Scholar 

  59. van Rietbergen, B., Huiskes, R.: Load transfer and stress shielding of the hydroxyapatite-ABG hip: a study of stem length and proximal fixation. J. Arthroplasty 16, 55–63 (2001)

    Article  Google Scholar 

  60. Van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D.R., Turner, T.M., Galante, J.O.: ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. J. Biomech. 26, 369–382 (1993)

    Article  Google Scholar 

  61. Viceconti, M., Bellingeri, L., Cristofolini, L., Toni, A.: A comparative study on different methods of automatic mesh generation of human femurs. Med. Eng. Phys. 20, 1–10 (1998)

    Article  Google Scholar 

  62. Viceconti, M., Davinelli, M., Taddei, F., Cappello, A.: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J. Biomech. 37, 1597–1605 (2004)

    Article  Google Scholar 

  63. Viceconti, M., Pancanti, A., Dotti, M., Traina, F., Cristofolini, L.: Effect of the initial implant fitting on the predicted secondary stability of a cement less stem. Med. Biol. Eng. Comput. 42, 222–229 (2004)

    Article  Google Scholar 

  64. Weinans, H., Huiskes, R., van Rietbergen, B., Sumner, D.R., Turner, T.M., Galante, J.O.: Adaptive bone remodeling around bonded noncemented total hip arthroplasty: a comparison between animal experiments and computer simulation. J. Orthopaedic Res.: Official Pub. Orthopaedic Res. Soc. 11, 500–513 (1993)

    Google Scholar 

  65. Weinans, H., Sumner, D.R., Igloria, R., Natarajan, R.N.: Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. J. Biomech. 33, 809–817 (2000)

    Article  Google Scholar 

  66. Wirtz, D.C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., Forst, R.: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J. Biomech. 33, 1325–1330 (2000)

    Article  Google Scholar 

  67. Zannoni, C., Mantovani, R., Viceconti, M.: Material properties assignment to finite element models of bone structures: a new method. Med. Eng. Phys. 20, 735–740 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Peleg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peleg, E. (2011). Patient Specific Modeling of Musculoskeletal Fractures. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_86

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_86

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics