Skip to main content

In Vitro Models for Biomechanical Studies of Neural Tissues

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 3))

Abstract

In vitro models are invaluable tools for studying cell behavior in a highly controlled setting. Cell and tissue culture models of the nervous system can be utilized to elucidate neurobiological phenomena that are difficult to observe, manipulate, or measure in vivo. In the context of biomechanics, culture models that accurately mimic specific brain features can be used to determine tissue properties and tolerances to mechanical loading. There are several criteria that culture models must meet in order to complement in vivo and macroscopic biomechanical studies. In addition to providing an environment that is conducive to cell survival, cell type and source are critical to the interpretation of results. In this review, we present design criteria for ideal cultures, the current state of the art in neural cell and tissue culturing methods, and the advantages and limitations to using culture mimics. We will further present what insights in vitro models can provide to complement in vivo and macroscopic biomechanics in terms of meso- to microscale material properties and tissue-level tolerance criteria. The discussion will focus primarily on central nervous system (CNS) tissue, which is inherently complex in cytoarchitecture and organization. In addition, the CNS is not typically exposed to mechanical loading beyond physiological motion; therefore, it is expected that cell death and functional failure may be particularly prominent at large deformations and high loading rates. These and other factors must be considered when attempting to extract and culture CNS tissue or its components for studying neurobiological or neuromechanical phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kindle, E., Schwartz, J., Jessell, T.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  2. Sycoma, E., Nicholson, C.: Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008)

    Article  Google Scholar 

  3. Sycoma, E.: Extra synaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129, 861–876 (2004)

    Article  Google Scholar 

  4. Sycoma, E.: Diffusion properties of the brain in health and disease. Neurochem. Int. 45, 453–466 (2004)

    Article  Google Scholar 

  5. Fedoroff, S., Richardson, A.: Protocols for Neural Cell Culture, 3rd edn. Humana Press, Totowa (2001)

    Book  Google Scholar 

  6. Hayflick, L., Moorhead, P.: The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961)

    Article  Google Scholar 

  7. Jacobson, M.: Clonal analysis and cell lineages of the vertebrate central nervous system. Annu. Rev. Neurosci. 8, 71–102 (1985)

    Article  Google Scholar 

  8. Potter, S.M., DeMarse, T.B.: A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17–24 (2001)

    Article  Google Scholar 

  9. Dichter, M.A.: Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain. Res. 149, 279–293 (1978)

    Article  Google Scholar 

  10. Corey, J.M., Wheeler, B.C., Brewer, G.J.: Compliance of hippocampal neurons to patterned substrate networks. J. Neurosci. Res. 30, 300–307 (1991)

    Article  Google Scholar 

  11. Choi, H.K., Won, L., Heller, A.: Dopaminergic neurons grown in three-dimensional reaggregate culture for periods of up to one year. J. Neurosci. Methods 46, 233–244 (1993)

    Article  Google Scholar 

  12. Hsiang, J., Heller, A., Hoffmann, P.C., Mobley, W.C., Wainer, B.H.: The effects of nerve growth factor on the development of septal cholinergic neurons in reaggregate cell cultures. Neuroscience 29, 209–223 (1989)

    Article  Google Scholar 

  13. O’Connor, S.M., Andreadis, J.D., Shaffer, K.M., Ma, W., Pancrazio, J.J., Stenger, D.A.: Immobilization of neural cells in three-dimensional matrices for biosensor applications. Biosens. Bioelectron. 14, 871–881 (2000)

    Article  Google Scholar 

  14. Cullen, D.K., Simon, C.M., LaPlaca, M.C.: Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res. 1158, 103–115 (2007)

    Article  Google Scholar 

  15. O’Connor, S.M., Stenger, D.A., Shaffer, K.M., Ma, W.: Survival and neurite outgrowth of rat cortical neurons in three-dimensional agarose and collagen gel matrices. Neurosci. Lett. 304, 189–193 (2001)

    Article  Google Scholar 

  16. Woerly, S., Plant, G.W., Harvey, A.R.: Cultured rat neuronal and glial cells entrapped within hydrogel polymer matrices: a potential tool for neural tissue replacement. Neurosci. Lett. 205, 197–201 (1996)

    Article  Google Scholar 

  17. LaPlaca, M.C., Cullen, D.K., McLoughlin, J.J., Cargill 2nd, R.S.: High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J. Biomech. 38, 1093–1105 (2005)

    Article  Google Scholar 

  18. Edelman, D.B., Keefer, E.W.: A cultural renaissance: in vitro cell biology embraces three-dimensional context. Exp. Neurol. 192, 1–6 (2005)

    Article  Google Scholar 

  19. Cukierman, E., Pankov, R., Stevens, D.R., Yamada, K.M.: Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001)

    Article  Google Scholar 

  20. Cukierman, E., Pankov, R., Yamada, K.M.: Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–639 (2002)

    Article  Google Scholar 

  21. Schmeichel, K.L., Bissell, M.J.: Modeling tissue-specific signaling and organ function in three dimensions. J. Cell Sci. 116, 2377–2388 (2003)

    Article  Google Scholar 

  22. Yamada, K.M., Pankov, R., Cukierman, E.: Dimensions and dynamics in integrin function. Braz. J. Med. Biol. Res. 36, 959–966 (2003)

    Article  Google Scholar 

  23. Miller, B.E., Miller, F.R., Heppner, G.H.: Factors affecting growth and drug sensitivity of mouse mammary tumor lines in collagen gel cultures. Cancer Res. 45, 4200–4205 (1985)

    Google Scholar 

  24. Grinnell, F.: Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13, 264–269 (2003)

    Article  Google Scholar 

  25. Balgude, A.P., Yu, X., Szymanski, A., Bellamkonda, R.V.: Agarose gel stiffness determines rate of DRAG neurite extension in 3M cultures. Biomaterials 22, 1077–1084 (2001)

    Article  Google Scholar 

  26. Coates, P.W., Fermini, B., Strahlendorf, J.C., Strahlendorf, H.K.: Utilization of three-dimensional culture for early morphometric and electrophysiological analyses of solitary cerebellar neurons. Dev. Neurosci. 14, 35–43 (1992)

    Article  Google Scholar 

  27. Coates, P.W., Nathan, R.D.: Feasibility of electrical recordings from unconnected vertebrate CNS neurons cultured in a three-dimensional extracellular matrix. J. Neurosci. Methods 20, 203–210 (1987)

    Article  Google Scholar 

  28. O’Shaughnessy, T.J., Lin, H.J., Ma, W.: Functional synapse formation among rat cortical neurons grown on three-dimensional collagen gels. Neurosci. Lett. 340, 169–172 (2003)

    Article  Google Scholar 

  29. Spector, D.H., Boss, B.D., Strecker, R.E.: A model three-dimensional culture system for mammalian dopaminergic precursor cells: application for functional intracerebral transplantation. Exp. Neurol. 124, 253–264 (1993)

    Article  Google Scholar 

  30. Bellamkonda, R., Ranieri, J.P., Aebischer, P.: Laminin oligopeptide derivatized agarose gels allow three-dimensional neurite extension in vitro. J. Neurosci. Res. 41, 501–509 (1995)

    Article  Google Scholar 

  31. Cullen, D.K., LaPlaca, M.C.: Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field. J. Neurotrauma 23, 1304–1319 (2006)

    Article  Google Scholar 

  32. Cullen, D.K., Lessing, M.C., LaPlaca, M.C.: Collagen-dependent neurite outgrowth and response to dynamic deformation in three-dimensional neuronal cultures. Ann Biomed. Eng. 35, 835–846 (2007)

    Article  Google Scholar 

  33. Vukasinovic, J., Cullen, D.K., LaPlaca, M.C., Glezer, A.: A microperfused incubator for tissue mimetic 3D cultures. Biomed. Microdevices 11, 1155–1165 (2009)

    Article  Google Scholar 

  34. Dillon, G.P., Yu, X., Sridharan, A., Ranieri, J.P., Bellamkonda, R.V.: The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J. Biomater. Sci. Polym. Ed. 9, 1049–1069 (1998)

    Article  Google Scholar 

  35. Willits, R.K., Skornia, S.L.: Effect of collagen gel stiffness on neurite extension. J. Biomater. Sci. Polym. Ed. 15, 1521–1531 (2004)

    Article  Google Scholar 

  36. Schense, J.C., Hubbell, J.A.: Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J. Biol. Chem. 275, 6813–6818 (2000)

    Article  Google Scholar 

  37. Yu, T.T., Shoichet, M.S.: Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials 26, 1507–1514 (2005)

    Article  Google Scholar 

  38. Yu, X., Bellamkonda, R.V.: Dorsal root ganglia neurite extension is inhibited by mechanical and chondroitin sulfate-rich interfaces. J. Neurosci. Res. 66, 303–310 (2001)

    Article  Google Scholar 

  39. Borkenhagen, M., Clemence, J.F., Sigrist, H., Aebischer, P.: Three-dimensional extracellular matrix engineering in the nervous system. J. Biomed. Mater. Res. 40, 392–400 (1998)

    Article  Google Scholar 

  40. Tsacopoulos, M.: Metabolic signaling between neurons and glial cells: a short review. J. Physiol. Paris 96, 283–288 (2002)

    Article  Google Scholar 

  41. Tsacopoulos, M., Magistretti, P.J.: Metabolic coupling between glia and neurons. J. Neurosci. 16, 877–885 (1996)

    Google Scholar 

  42. Aschner, M.: Neuron-astrocyte interactions: implications for cellular energetics and antioxidant levels. Neurotoxicology 21, 1101–1107 (2000)

    Google Scholar 

  43. Pardo, B., Honegger, P.: Differentiation of rat striatal embryonic stem cells in vitro: monolayer culture vs three-dimensional coculture with differentiated brain cells. J. Neurosci. Res. 59, 504–512 (2000)

    Article  Google Scholar 

  44. Pulliam, L., Stubblebine, M., Hyun, W.: Quantification of neurotoxicity and identification of cellular subsets in a three-dimensional brain model. Cytometry 32, 66–69 (1998)

    Article  Google Scholar 

  45. Irons, H.R., Cullen, D.K., Shapiro, N.P., Lambert, N.A., Lee, R.H., LaPlaca, M.C.: Three-dimensional neural constructs: a novel platform for neurophysiological investigation. J. Neural. Eng. 5, 333–341 (2008)

    Article  Google Scholar 

  46. Ahmed, S.M., Rzigalinski, B.A., Willoughby, K.A., Sitterding, H.A., Ellis, E.F.: Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J. Neurochem. 74, 1951–1960 (2000)

    Article  Google Scholar 

  47. Steinschneider, R., Delmas, P., Nedelec, J., Gola, M., Bernard, D., Boucraut, J.: Appearance of neurofilament subunit epitopes correlates with electrophysiological maturation in cortical embryonic neurons cocultured with mature astrocytes. Brain. Res. Dev. Brain. Res. 95, 15–27 (1996)

    Article  Google Scholar 

  48. Nakanishi, K., Nakanishi, M., Kukita, F.: Dual intracellular recording of neocortical neurons in a neuron-glia co-culture system. Brain Res. Brain. Res. Protoc. 4, 105–114 (1999)

    Article  Google Scholar 

  49. LaPlaca, M.C., Vernekar, V.N., Shoemaker, J.T., Cullen, D.K.: Three-dimensional neuronal cultures. In: Berthiaume, F., Morgan, J. (eds.) Methods in Bioengineering: 3D Tissue Engineering. Artech House Publishers, London (2010)

    Google Scholar 

  50. Nicholson, C., Sykova, E.: Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215 (1998)

    Article  Google Scholar 

  51. Cullen, D.K., Vukasinovic, J., Glezer, A., Laplaca, M.C.: Microfluidic engineered high cell density three-dimensional neural cultures. J. Neural Eng. 4, 159–172 (2007)

    Article  Google Scholar 

  52. Braitenberg, V.: Brain size and number of neurons: an exercise in synthetic neuroanatomy. J. Comput. Neurosci. 10, 71–77 (2001)

    Article  Google Scholar 

  53. Gabbott, P.L., Stewart, M.G.: Distribution of neurons and glia in the visual cortex (area 17) of the adult albino rat: a quantitative description. Neuroscience 21, 833–845 (1987)

    Article  Google Scholar 

  54. Alves, P., Moreira, J., Rodrigues, J., Aunins, J., Carrondo, M.: Two-dimensional versus three-dimensional culture systems: effects on growth and productivity of BHK cells. Biotechnol. Bioeng. 52, 429–432 (1996)

    Article  Google Scholar 

  55. Kleinman, H.K., McGarvey, M.L., Hassell, J.R., Star, V.L., Cannon, F.B., et al.: Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986)

    Article  Google Scholar 

  56. Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S., Reddi, A.H.: Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1–8 (1992)

    Article  Google Scholar 

  57. Morrison III, B., Cater, H.L., Benham, C.D., Sundstrom, L.E.: An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J. Neurosci. Meth. 150, 192–201 (2006)

    Article  Google Scholar 

  58. Stoppini, L., Buchs, P.A., Muller, D.: Lesion-induced neurite sprouting and synapse formation in hippocampal organotypic cultures. Neuroscience 57, 985–994 (1993)

    Article  Google Scholar 

  59. Gahwiler, B.H.: Organotypic monolayer cultures of nervous tissue. J. Neurosci. Meth. 4, 329–342 (1981)

    Article  Google Scholar 

  60. Elkin, B.S., Morrison III, B.: Region-specific tolerance criteria for the living brain. Stapp Car Crash J. 51, 127–138 (2007)

    Google Scholar 

  61. Sieg, F., Wahle, P., Pape, H.C.: Cellular reactivity to mechanical axonal injury in an organotypic in vitro model of neurotrauma. J. Neurotrauma 16, 1197–1213 (1999)

    Article  Google Scholar 

  62. Morrison III, B., Eberwine, J.H., Meaney, D.F., McIntosh, T.K.: Traumatic injury induces differential expression of cell death genes in organotypic brain slice cultures determined by complementary DNA array hybridization. Neuroscience 96, 131–139 (2000)

    Article  Google Scholar 

  63. Krassioukov, A.V., Ackery, A., Schwartz, G., Adamchik, Y., Liu, Y., Fehlings, M.G.: An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain Res. Brain Res. Protoc. 10, 60–68 (2002)

    Article  Google Scholar 

  64. Stavridis, S.I., Dehghani, F., Korf, H.W., Hailer, N.P.: Characterisation of transverse slice culture preparations of postnatal rat spinal cord: preservation of defined neuronal populations. Histochem. Cell Biol. 123, 377–392 (2005)

    Article  Google Scholar 

  65. Gahwiler, B.H.: Development of the hippocampus in vitro: cell types, synapses, and receptors. Neuroscience 11, 751–760 (1984)

    Article  Google Scholar 

  66. Del. Rio., J.A., Heimrich, B., Soriano, E., Schwegler, H., Frotscher, M.: Proliferation and differentiation of glial fibrillary acidic protein immunoreactive glial cells in organotypic slice cultures of rat hippocampus. Neuroscience 43, 335–347 (1991)

    Article  Google Scholar 

  67. Caeser, M., Aertsen, A.: Morphological organization of rat hippocampal slice cultures. J. Comp. Neurol. 307, 87–106 (1991)

    Article  Google Scholar 

  68. Stoppini, L., Buchs, P.A., Muller, D.: A simple method for organotypic cultutres of nervous tissue. J. Neurosci. Meth. 37, 173–182 (1991)

    Article  Google Scholar 

  69. Buchs, P.A., Stoppini, L., Muller, D.: Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures. Brain Res. Dev. Brain Res. 71, 81–91 (1993)

    Article  Google Scholar 

  70. Mielke, J.G., Comas, T., Woulfe, J., Monette, R., Chakravarthy, B., Mealing, G.A.: Cytoskeletal, synaptic, and nuclear protein changes associated with rat interface organotypic hippocampal slice culture development. Brain Res. Dev. Brain Res. 160, 275–286 (2005)

    Article  Google Scholar 

  71. De Simoni, A., Griesinger, C.B., Edwards, F.A.: Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J. Physiol. 550, 135–147 (2003)

    Article  Google Scholar 

  72. Collin, C., Miyaguchi, K., Segal, M.: Dendritic spine density and LTP induction in cultured hippocampal slices. J. Neurophysiol. 77, 1614–1623 (1997)

    Google Scholar 

  73. Gahwiler, B.H.: Slice cultures of cerebellar, hippocampal, and hypothalamic tissue. Experientia 40, 235–243 (1984)

    Article  Google Scholar 

  74. Robain, O., Barbin, G., de Billette, V., Jardin, L., Jahchan, T., Ben-Ari, Y.: Development of mossy fiber synapses in hippocampal slice culture. Brain Res. Dev. Brain Res. 80, 244–250 (1994)

    Article  Google Scholar 

  75. Hartel, R., Matus, A.: Cytoskeletal maturation in cultured hippocampal slices. Neuroscience 78, 1–5 (1997)

    Article  Google Scholar 

  76. Bahr, B.A., Kessler, M., Rivera, S., Vanderklish, P.W., Hall, R.A., et al.: Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices. Hippocampus 5, 425–439 (1995)

    Article  Google Scholar 

  77. Martens, U., Wree, A.: Distribution of [3H]MK-801, [3H]AMPA and [3H]kainate binding sites in rat hippocampal long-term slice cultures isolated from external afferents. Anat. Embryol. (Berl) 203, 491–500 (2001)

    Article  Google Scholar 

  78. Morrison III, B., Pringle, A.K., McManus, T., Ellard, J., Bradley, M., et al.: L-Arginyl-3, 4-Spermidine is neuroprotective in several in vitro models of neurodegeneration and in vivo ischaemia without suppressing synaptic transmission. Brit. J. Pharm. 137, 1255–1268 (2002)

    Article  Google Scholar 

  79. Vornov, J.J., Tasker, R.C., Lost, D.: Direct observation of the agonist-specific regional vulnerability to glutamate, NMDA, and kainate neurotoxicity in organotypic hippocampal cultures. Exp. Neurol. 114, 11–22 (1991)

    Article  Google Scholar 

  80. Gutierrez, R., Heinemann, U.: Synaptic reorganization in explanted cultures of rat hippocampus. Brain Res. 815, 304–316 (1999)

    Article  Google Scholar 

  81. Parent, J.M., Yu, T.W., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S., Lowenstein, D.H.: Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosc. Off. J. Soc. Neurosci. 17, 3727–3738 (1997)

    Google Scholar 

  82. Muller, D., Buchs, P.A., Stoppini, L.: Time course of synaptic development in hippocampal organotypic cultures. Brain Res. Mol. Brain Res. 71, 93–100 (1993)

    Google Scholar 

  83. McBain, C.J., Boden, P., Hill, R.G.: Rat hippocampal slices ‘in vitro’ display spontaneous epileptiform activity following long-term organotypic culture. J. Neurosci. Meth. 27, 35–49 (1989)

    Article  Google Scholar 

  84. Fowler, J., Bornstein, M.B., Crain, S.M.: Sustained hyperexcitability elicited by repetitive electric stimulation of organotypic hippocampal explants. Brain Res. 378, 398–404 (1986)

    Article  Google Scholar 

  85. Xiang, Z., Hrabetova, S., Moskowitz, S.I., Casaccia-Bonnefil, P., Young, S.R., et al.: Long-term maintenance of mature hippocampal slices in vitro. J. Neurosci. Meth. 98, 145–154 (2000)

    Article  Google Scholar 

  86. Finley, M., Fairman, D., Liu, D., Li, P., Wood, A., Cho, S.: Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury. Brain Res. 1001, 125–132 (2004)

    Article  Google Scholar 

  87. Wilhelmi, E., Schoder, U.H., Benabdallah, A., Sieg, F., Breder, J., Reymann, K.G.: Organotypic brain-slice cultures from adult rats: approaches for a prolonged culture time. Altern. Lab Anim. 30, 275–283 (2002)

    Google Scholar 

  88. Takhounts, E.G., Eppinger, R.H., Campbell, J.Q., Tannous, R.E., Power, E.D.: On the development of the SIMon finite element head model. Stapp Car Crash J. 47, 107–133 (2003)

    Google Scholar 

  89. Cheng, S., Clarke, E.C., Bilston, L.E.: Rheological properties of the tissues of the central nervous system: a review. Med. Eng. Phys. 30, 1318–1337 (2008)

    Article  Google Scholar 

  90. Hrapko, M., van Dommelen, J.A., Peters, G.W., Wismans, J.S.: The influence of test conditions on characterization of the mechanical properties of brain tissue. J. Biomech. Eng. 130, 031003 (2008)

    Google Scholar 

  91. Fallenstein, G.T., Hulce, V.D.: Dynamic mechanical properties of human brain tissue. J. Biomech. 2, 217–226 (1969)

    Article  Google Scholar 

  92. Arbogast, K.B., Margulies, S.S.: Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31, 801–807 (1998)

    Article  Google Scholar 

  93. Nicolle, S., Lounis, M., Willinger, R., Palierne, J.F.: Shear linear behavior of brain tissue over a large frequency range. Biorheology 42, 209–223 (2005)

    Google Scholar 

  94. Bilston, L.E., Liu, Z., Phan-Thien, N.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38, 335–345 (2001)

    Google Scholar 

  95. Takhounts E., Crandall, J.R., Darvish, K.K.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47, 79–92 (2003)

    Google Scholar 

  96. Tamura, A., Hayashi, S., Watanabe, I., Nagayama, K., Matsumoto, T.: Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2, 115–126 (2007)

    Article  Google Scholar 

  97. Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40, 117–124 (2007)

    Article  Google Scholar 

  98. Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002)

    Article  Google Scholar 

  99. Franceschini, G., Bigoni, D., Regitnig, P., Holzapfel, G.A.: Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54, 2592–2620 (2006)

    Article  MATH  Google Scholar 

  100. Mao, H., Jin, X., Zhang, L., Yang, K.H., Igarashi, T., et al.: Finite element analysis of controlled cortical impact-induced cell loss. J. Neurotrauma 27, 877–888 (2010)

    Article  Google Scholar 

  101. Hicks, R., Soares, H., Smith, D., McIntosh, T.: Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol. 91, 236–246 (1996)

    Article  Google Scholar 

  102. van Dommelen, J.A., van der Sande, T.P., Hrapko, M., Peters, G.W.: Mechanical properties of brain tissue by indentation: interregional variation. J. Mech. Behav. Biomed. Mater. 3, 158–166 (2010)

    Google Scholar 

  103. Gefen, A., Margulies, S.S.: Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37, 1339–1352 (2004)

    Article  Google Scholar 

  104. Elkin, B.S., Azeloglu, E.U., Costa, K.D., Morrison III, B.: Mechanical heterogeneity of the rat hippocampus measured by AFM indentation. J. Neurotrauma 24, 812–822 (2007)

    Article  Google Scholar 

  105. Elkin, B.S., Ilankovan, A., Morrison, III B.: Age-dependent regional mechanical properties of the rat hippocampus and cortex. J. Biomech. Eng. 132, 011010 (2010)

    Google Scholar 

  106. Elkin, B.S., Ilankovan, A., Morrison, III B.: A detailed viscoelastic characterization of the P17 and adult rat brain. J. Neurotrauma (2011, in press)

    Google Scholar 

  107. Tripathy, S., Berger, E.J.: Measuring viscoelasticity of soft samples using atomic force microscopy. J. Biomech. Eng. 131, 094507 (2009)

    Google Scholar 

  108. Neubert, H.K.P.: A simple model representing internal damping in solid materials. Aeronaut. Quart. 14, 187–210 (1963)

    Google Scholar 

  109. Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.F.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A Math. Gen. 28, 6567–6584 (1995)

    Article  MATH  Google Scholar 

  110. Harding, J.W., Sneddon, I.N.: The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Proc. Camb. Philol. Soc. 41, 16–26 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  111. Cheng, L., Xia, X., Yu, W., Scriven, L.E., Gerberich, W.W.: Flat-punch indentaiton of viscoelastic material. J. Polym. Sci. B 38, 10–22 (2000)

    Article  Google Scholar 

  112. Hayes, W.C., Keer, L.M., Herrmann, G., Mockros, L.F.: A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5, 541–551 (1972)

    Article  Google Scholar 

  113. Lu, Y.B., Franze, K., Seifert, G., Steinhauser, C., Kirchhoff, F., et al.: Viscoelastic properties of individual glial cells and neurons in the CNS. Proc. Natl. Acad. Sci. U.S.A 103, 17759–17764 (2006)

    Article  Google Scholar 

  114. Darvish, K.K., Crandall, J.R.: Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23, 633–645 (2001)

    Article  Google Scholar 

  115. Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng. 119, 423–432 (1997)

    Article  Google Scholar 

  116. Rivlin, R.S.: Large elastic deformations of isotropic material I fundamental concepts. Philol. Trans. R. Soc. Lond. A 240, 459–490 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  117. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  Google Scholar 

  118. Adkins, J.E., Rivlin, R.S.: Large elastic deformations of isotropic materials IX. The deformation of thin shells. Philol. Trans. R. Soc. Lond. A 244, 505–531 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  119. Ogden, R.W.: Large deformation isotropic elasticity—correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Lond. A 328, 567–583 (1972)

    Article  MATH  Google Scholar 

  120. Gefen, A., Gefen, N., Zhu, Q., Raghupathi, R., Margulies, S.S.: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20, 1163–1177 (2003)

    Article  Google Scholar 

  121. Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124, 244–252 (2002)

    Article  Google Scholar 

  122. Ting, T.C.T.: Contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845–854 (1966)

    MATH  Google Scholar 

  123. Segedin, C.M.: The relationship between load and penetration for a spherical punch. Mathematika 4, 156–161 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  124. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  125. Mahaffy, R.E., Park, S., Gerde, E., Kas, J., Shih, C.K.: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86, 1777–1793 (2004)

    Article  Google Scholar 

  126. Mahaffy, R.E., Shih, C.K., MacKintosh, F.C., Kas, J.: Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880–883 (2000)

    Article  Google Scholar 

  127. Alcaraz, J., Buscemi, L., Puig-de-Morales, M., Colchero, J., Baro, A., Navajas, D.: Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18, 716–721 (2002)

    Article  Google Scholar 

  128. Lodge AS.: Elastic liquids. Academic Press, London (1964).

    Google Scholar 

  129. Wilhelm, M.: Fourier-transform rheology. Macromol. Mater. Eng. 287, 83–105 (2002)

    Article  Google Scholar 

  130. Cho, K.S., Hyun, K., Ahn, K.H., Lee, S.J.: A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 49, 747–758 (2005)

    Article  Google Scholar 

  131. Ewoldt, R.H., Hosoi, A.E., McKinley, G.H.: New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427–1458 (2008)

    Article  Google Scholar 

  132. Coats, B., Margulies, S.S.: Material properties of porcine parietal cortex. J. Biomech. 39, 2521–2525 (2006)

    Article  Google Scholar 

  133. Thibault, K.L., Margulies, S.S.: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31, 1119–1126 (1998)

    Article  Google Scholar 

  134. Gillespie, P.G., Muller, U.: Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139, 33–44 (2009)

    Article  Google Scholar 

  135. Lin, Y.W., Cheng, C.M., Leduc, P.R., Chen, C.C.: Understanding sensory nerve mechanotransduction through localized elastomeric matrix control. PLoS One 4, e4293 (2009)

    Article  Google Scholar 

  136. Stabenfeldt, S.E., Garcia, A.J., LaPlaca, M.C.: Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J. Biomed. Mater. Res. A 77A, 718–725 (2006)

    Article  Google Scholar 

  137. Dai, W.G., Belt, J., Saltzman, W.M.: Cell-binding peptides conjugated to poly(ethylene glycol) promote neural cell-aggregation. Bio-Technology 12, 797–801 (1994)

    Google Scholar 

  138. Hern, D.L., Hubbell, J.A.: Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39, 266–276 (1998)

    Article  Google Scholar 

  139. Mahoney, M.J., Anseth, K.S.: Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27, 2265–2274 (2006)

    Article  Google Scholar 

  140. Georges, P.C., Miller, W.J., Meaney, D.F., Sawyer, E.S., Janmey, P.A.: Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90, 3012–3018 (2006)

    Article  Google Scholar 

  141. Flanagan, L.A., Ju, Y.E., Marg, B., Osterfield, M., Janmey, P.A.: Neurite branching on deformable substrates. Neuroreport 13, 2411–2415 (2002)

    Article  Google Scholar 

  142. Guo, W.H., Frey, M.T., Burnham, N.A., Wang, Y.L.: Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90, 2213–2220 (2006)

    Article  Google Scholar 

  143. Pelham Jr., R.J., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U.S.A. 94, 13661–13665 (1997)

    Article  Google Scholar 

  144. Engler, A.J., Griffin, M.A., Sen, S., Bonnemann, C.G., Sweeney, H.L., Discher, D.E.: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell. Biol. 166, 877–887 (2004)

    Article  Google Scholar 

  145. Georges, P.C., Janmey, P.A.: Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98, 1547–1553 (2005)

    Article  Google Scholar 

  146. Slemmer, J.E., Matser, E.J., de Zeeuw, C.I., Weber, J.T.: Repeated mild injury causes cumulative damage to hippocampal cells. Brain 125, 2699–2709 (2002)

    Article  Google Scholar 

  147. Balentine, J.D., Greene, W.B., Bornstein, M.: In vitro spinal cord trauma. Lab. Invest. 58, 93–99 (1988)

    Google Scholar 

  148. Regan, R.F., Choi, D.W.: The effect of NMDA, AMPA/kainate, and calcium channel antagonists on traumatic cortical neuronal injury in culture. Brain Res. 633, 236–242 (1994)

    Article  Google Scholar 

  149. Cargill, R.S., Thibault, L.E.: Acute alterations in [Ca2 +]i in NG108–15 cells subjected to high strain rate deformation and chemical hypoxia: An in vitro model for neural trauma. J. Neurotrauma 13, 395–407 (1996)

    Article  Google Scholar 

  150. Ellis, E.F., McKinney, J.S., Willoughby, K.A., Liang, S., Povlishock, J.T.: A new model for rapid stretch-induced injury of cells in culture: Characterization of the model using astrocytes. J. Neurotrauma 12, 325–339 (1995)

    Article  Google Scholar 

  151. LaPlaca, M.C., Thibault, L.E.: An in vitro traumatic injury model to examine the response of neurons to a hydrodynamicaly induced deformation. Ann. Biomed. Eng. 25, 665–677 (1997)

    Article  Google Scholar 

  152. Morrison III, B., Meaney, D.F., McIntosh, T.K.: Mechanical characterization of an in vitro device designed to quantitatively injure living brain tissue. Ann. Biomed. Eng. 26, 381–390 (1998)

    Article  Google Scholar 

  153. Smith, D.H., Wolf, J.A., Lusardi, T.A., Lee, V.M., Meaney, D.F.: High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. J. Neurosci. 19, 4263–4269 (1999)

    Google Scholar 

  154. Morrison III, B., Cater, H.L., Wang, C.C., Thomas, F.C., Hung, C.T., et al.: A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47, 93–105 (2003)

    Google Scholar 

  155. Elkin, B.S., Morrison 3rd, B.: Region-specific tolerance criteria for the living brain. Stapp Car Crash J. 51, 127–138 (2007)

    Google Scholar 

  156. LaPlaca, M.C., Lee, V.M., Thibault, L.E.: An in vitro model of traumatic neuronal injury: loading rate-dependent changes in acute cytosolic calcium and lactate dehydrogenase release. J. Neurotrauma 14, 355–368 (1997)

    Article  Google Scholar 

  157. Geddes, D.M., Cargill 2nd, R.S., LaPlaca, M.C.: Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J. Neurotrauma 20, 1039–1049 (2003)

    Article  Google Scholar 

  158. Pfister, B.J., Weihs, T.P., Betenbaugh, M., Bao, G.: An in vitro uniaxial stretch model for axonal injury. Ann. Biomed. Eng. 31, 589–598 (2003)

    Article  Google Scholar 

  159. Lusardi, T.A., Rangan, J., Sun, D., Smith, D.H., Meaney, D.F.: A device to study the initiation and propagation of calcium transients in cultured neurons after mechanical stretch. Ann. Biomed. Eng. 32, 1546–1558 (2004)

    Article  Google Scholar 

  160. Cater, H.L., Sundstrom, L.E., Morrison III, B.: Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate. J. Biomech. 39, 2810–2818 (2006)

    Article  Google Scholar 

  161. Bain, A.C., Meaney, D.F.: Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122, 615–622 (2000)

    Article  Google Scholar 

  162. Galle, B., Ouyang, H., Shi, R., Nauman, E.: Correlations between tissue-level stresses and strains and cellular damage within the guinea pig spinal cord white matter. J. Biomech. 40, 3029–3033 (2007)

    Article  Google Scholar 

  163. Barbee, K.A.: Mechanical cell injury. Ann. N. Y. Acad. Sci. 1066, 67–84 (2005)

    Article  Google Scholar 

  164. Kumaria, A., Tolias, C.M.: In vitro models of neurotrauma. Br. J. Neurosurg 22, 200–206 (2008)

    Article  Google Scholar 

  165. LaPlaca, M.C., Simon, C.M., Prado, G.R., Cullen, D.K.: CNS injury biomechanics and experimental models. Prog. Brain Res. 161, 13–26 (2007)

    Article  Google Scholar 

  166. Morrison III, B., Saatman, K.E., Meaney, D.F., McIntosh, T.K.: In vitro central nervous system models of mechanically induced trauma: a review. J. Neurotrauma 15, 911–928 (1998)

    Article  Google Scholar 

  167. Geddes, D.M., LaPlaca, M.C., Cargill, R.S.: Susceptibility of hippocampal neurons to mechanically induced injury. Exp. Neurol. 184, 420–427 (2003)

    Article  Google Scholar 

  168. Lusardi, T.A., Wolf, J.A., Putt, M.E., Smith, D.H., Meaney, D.F.: Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons. J. Neurotrauma 21, 61–72 (2004)

    Article  Google Scholar 

  169. Lusardi, T.A., Smith, D.H., Wolf, J.A., Meaney, D.F.: The separate roles of calcium and mechanical forces in mediating cell death in mechanically injured neurons. Biorheology 40, 401–409 (2003)

    Google Scholar 

  170. DeRidder, M.N., Simon, M.J., Siman, R., Auberson, Y.P., Raghupathi, R., Meaney, D.F.: Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. Neurobiol. Dis. 22, 165–176 (2006)

    Article  Google Scholar 

  171. Geddes-Klein, D.M., Schiffman, K.B., Meaney, D.F.: Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J. Neurotrauma 23, 193–204 (2006)

    Article  Google Scholar 

  172. Yu, Z., Morrison III, B.: Experimental mild traumatic brain injury induces functional alteration of the developing hippocampus. J. Neurophysiol. 103, 499–510 (2010)

    Article  Google Scholar 

  173. Prado, G.R., Ross, J.D., Deweerth, S.P., LaPlaca, M.C.: Mechanical trauma induces immediate changes in neuronal network activity. J. Neural. Eng. 2, 148–158 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Varadraj Vernekar, Ph.D. for contributions to the 3D culture mechanical testing study, and Benjamin S. Elkin, Ph.D. for the dynamic AFM indentation studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barclay Morrison III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morrison, B., Cullen, D.K., LaPlaca, M. (2011). In Vitro Models for Biomechanical Studies of Neural Tissues. In: Bilston, L. (eds) Neural Tissue Biomechanics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_79

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_79

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13889-8

  • Online ISBN: 978-3-642-13890-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics