Skip to main content

Experimental Analysis of Endovascular Treatment of AAA and Predictors of Long Term Outcomes

  • Chapter
  • First Online:
Biomechanics and Mechanobiology of Aneurysms

Abstract

This chapter describes experimental investigations of parameters which are likely to reduce the ability of an implanted stent-graft for the treatment of Abdominal Aortic Aneurysm (AAA) to resist migration. Idealised AAA analogues were manufactured with realistic wall properties. Both proximal stents and complete stent-graft devices were deployed inside these models and the force required to cause migration during physiological flow was investigated. The effect of stent-graft morphology on the columnar rigidity generated by a stent-graft and on the migration force transmitted to the proximal end of the device was also investigated. Lower wall compliance and pulsatile wall motions due to physiological flow were seen to reduce the fixation of an implanted proximal stent from 8.4 ± 0.32 to 3.7 ± 0.06 N. The results also show that high systolic pressure or low proximal fixation length reduce the force required to migrate a graft from 4.62 ± 0.25 to 2.57 ± 0.11 N in a flexible stent-graft with little longitudinal rigidity. In a fully stented device these correlations were less clear due to the complex compressive behaviour of the device and the increase in iliac fixation when the proximal fixation length was reduced. Longitudinal rigidity was measured in terms of the amount of force to cause 5 mm compression of the graft and was found to provide up to 11.53 N of resistance to migration in a fully stented device which is greater than the resistance afforded by passive proximal stents alone. Even the flexible stent-graft was shown to require up to 5.88 N of compressive force to cause 5 mm of device compression due to internal pressure assisting the device in holding its shape. Increasing iliac bifurcation angle or placing the devices in a tortuous configuration was found to reduce the longitudinal rigidity of both devices. The results also showed that the drag force acting on a stent-graft may be somewhat attenuated by compressive forces set up in a non rigid stent-graft model. Both an increase in iliac bifurcation angle and tortuosity was found to increase the migration force on the proximal end of the device from 2.56 to 4.92 N. Tortuosity and higher iliac leg angle were both found to have the double disadvantage of increasing the migration force and decreasing device longitudinal rigidity, while longitudinal rigidity was shown to be crucial to the success of passively fixated stent-grafts. The test methods described in this chapter could be useful in the future preclinical evaluation of stent-grafts and could be useful in the design phase of next generation EVAR devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertini, J.N., Macierewicz, J.A., Yusuf, S.W., Wenham, P.W., Hopkinson, B.R.: Pathophysiology of proximal perigraft endoleak following endovascular repair of abdominal aortic aneurysms: a study using a flow model. Eur. J. Vasc. Endovasc. Surg. 22, 53–56 (2001)

    Article  Google Scholar 

  2. Arko, F.R., Heikkinen, M., Lee, E.S., Bass, A., Alsac, J.M., Zarins, C.K.: Iliac fixation length and resistance to in vivo stent-graft displacement. J. Vasc. Surg. 41, 644–671 (2005)

    Article  Google Scholar 

  3. Brunkwall, J.: How to design the optimal stent graft—what have we learnt? Scand. J. Surg. 97, 191–194 (2008)

    Google Scholar 

  4. Chong, C.K., How, T.V., Harris, P.L.: Flow visualization in a model of a bifurcated stent-graft. J. Endovasc. Ther. 12(4), 435–445 (2005)

    Article  Google Scholar 

  5. Chong, C.K., How, T.V., Gilling-Smith, G.L., Harris, P.L.: Modelling endoleaks and collateral reperfusion following endovascular AAA exclusion. J. Endovasc. Ther. 10(3), 424–432 (2003)

    Article  Google Scholar 

  6. Chuter, T.A.M.: Stent graft design: the good, the bad and the ugly. Cardiovasc. Surg. 10, 7–13 (2002)

    Article  Google Scholar 

  7. Conners, M.S., Sternbergh, W.C., Carter, G., Tonnessen, B.H., Yoselevitz, M., Money, S.R.: Endograft migration one to four years after endovascular abdominal aortic aneurysm repair with the AneuRx device: a cautionary note. J. Vasc. Surg. 36, 476–484 (2002)

    Article  Google Scholar 

  8. Corbett, T.J., Doyle, B.J., Callanan, A., Walsh, M.T., McGloughlin, T.M.: Engineering silicone rubbers for in vitro studies: creating AAA models and ILT analogues with physiological properties. J. Biomech. Eng. 132(1), 011008 (2010). doi:10.1115/1.4000156

    Google Scholar 

  9. Corbett, T.J., Molony, D.S., Callanan, A., McGloughlin, T.M.: The effect of vessel material properties and pulsatile wall motion on the fixation of a proximal stent of an endovascular graft. Med. Eng. Phys. (2010 in press)

    Google Scholar 

  10. Corbett, T.J., Callanan, A., O’Donnell, M.R., McGloughlin, T.M.: An improved methodology for investigating the parameters influencing migration resistance or abdominal aortic stent-grafts. J. Endovasc. Ther. 17(1), 95–107 (2010)

    Article  Google Scholar 

  11. Corbett, T.J., Callanan, A., McGloughlin, T.M.: In vitro measurement of the axial migration force on the proximal end of a bifurcated abdominal aortic aneurysm stent-graft model. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. (2010, in press)

    Google Scholar 

  12. Doyle, B.J.: Rupture behaviour of abdominal aortic aneurysms: a computational and experimental investigation. Ph.D. Thesis, University of Limerick (2009)

    Google Scholar 

  13. Doyle, B.J., Corbett, T.J., Callanan, A., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: An experimental and numerical comparison of the rupture locations of an abdominal aortic aneurysm. J. Endovasc. Ther. 16(3), 322–335 (2009)

    Article  Google Scholar 

  14. Doyle, B.J., Morris, L.G., Callanan, A., Kelly, P., Vorp, D.A., McGloughlin, T.M.: 3D reconstruction and manufacture of real abdominal aortic aneurysms: from CT scan to silicone model. J. Biomech. Eng. 130(3), 034501-1–034501-5 (2008)

    Google Scholar 

  15. DuBost, C., Allary, M., Oeconomos, N.: Resection of an aneurysm of the abdominal aorta: reestablishment of the continuity by a preserved human arterial graft, with result after five months. Arch. Surg. 64, 405–408 (1952)

    Google Scholar 

  16. Fairman, R.M., Velazquez, O.C., Carpenter, J.P., Woo, E., Baum, R.A., Golden, M.A., Kritpracha, B., Criado, F.: Midterm pivotal trial results of the talent low profile system for repair of abdominal aortic aneurysm: analysis of complicated versus uncomplicated aortic necks. J. Vasc. Surg. 40, 1074–1082 (2004)

    Article  Google Scholar 

  17. Fransen, G.A.J., Desgranges, P., Laheij, R.J.F., Harris, P.L., Becquemin, J.P.: Frequency, predictive factors, and consequences of stent graft kink following endovascular AAA repair. J. Endovasc. Ther. 10, 913–918 (2003)

    Article  Google Scholar 

  18. Fraser, K., Meagher, S., Blake, J.R., Easson, W.J., Hoskins, P.R.: Characterization of an abdominal aortic velocity waveform in patients with abdominal aortic aneurysm. Ultrasound Med. Biol. 34, 73–80 (2008)

    Article  Google Scholar 

  19. Gawenda M, Knez P, Winter S, Jaschke G, Wassmer G, Schmitz-Rixen T, Brunkwall J.: Endotension is influenced by wall compliance in a latex aneurysm model. Eur. J. Vasc. Endovasc. Surg. 27(1), 45–50 (2004)

    Article  Google Scholar 

  20. Hinnen, J.W., Rixen, D.J., Koning, O.H., van Bockel, J.H., Hamming, J.F.: Development of fibrinous thrombus analogue for in vitro abdominal aortic aneurysm studies. J. Biomech. 40(2), 289–295 (2007)

    Article  Google Scholar 

  21. How, T.V., Guidoin, R., Young, S.K.: Engineering design of vascular prostheses. Proc. Inst. Mech. Eng. Part H. J. Eng. Med. 206(2), 61–71 (1992)

    Google Scholar 

  22. Hyun, S., Hyun, Y.E., Klyachkin, M.: Effects of Endovascular Graft Morphology on the Migration Force. Paper # 192887 Proc. 10th American Society of Mechanical Engineers (ASME) Summer Bioengineering Conference Marco Island, Florida, USA; June 25–29, (2008)

    Google Scholar 

  23. Kratzberg, J.A., Golzarian, J., Raghavan, M.L.: Role of graft oversizing in the fixation strength of barbed endovascular grafts. J. Vasc. Surg. 49, 1543–1553 (2009)

    Article  Google Scholar 

  24. Laheij, R., Van Marrewijk, C., Buth, J.: Progress report including the data of the overall patient cohort. EUROSTAR Data Registry Centre, p. 8, January (2001)

    Google Scholar 

  25. Lambert, A.W., Williams, D.J., Budd, J.S., Horroks, M.: Experimental assessment of proximal stent-graft (InterVascularTM) fixation in human cadaveric infrarenal aortas. Eur. J. Vasc. Endovasc. Surg. 17, 60–65 (1999)

    Article  Google Scholar 

  26. Li, Z., Kleinstreur, C.: Effects of major endoleaks on a stented abdominal aortic aneurysm. J. Biomech. Eng. 128, 59–68 (2006)

    Article  Google Scholar 

  27. Li, Z., Kleinstreur, C.: Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model. J. Biomech. 39, 2264–2273 (2006)

    Article  Google Scholar 

  28. Li Z, Kleinstreur C (2006) Computational analysis of type II endoleaks in a stented abdominal aortic aneurysm model. J. Biomech. 39(14), 2573–2582.

    Article  Google Scholar 

  29. Li, Z., Kleinstreur C.: Fluid-structure interaction effects on sac-blood pressure and wall stress in a stented aneurysm. J. Biomech. Eng. 127, 662–671(2005)

    Article  Google Scholar 

  30. Li, Z., Kleinstreur, C.: Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27, 369–382 (2005)

    Article  Google Scholar 

  31. Li, Z., Kleinstreur, C.: Computational analysis of biomechanical contributors to possible endovascular graft failure. Biomech. Mod. Mechanobiol. 4, 221–234 (2005)

    Article  Google Scholar 

  32. Liffman, K., Lawerence Brown, M.M.D., Semmens, J.B., Bui, A., Rudman, M., Hartley, D.E.: Analytical modelling and numerical simulation of forces in an endoluminal graft. J. Endovasc. Ther. 8, 358–371 (2001)

    Article  Google Scholar 

  33. Major, A., Guidoin, R., Soulez, G., Gaboury, L.A., Cloutier, G., Saproval, M., Douville, Y., Dionne, G., Geelkerken, R.H., Petrasek, P., Lerouge, S.: Implant degradation and poor healing after endovascular repair of abdominal aortic aneurysms: an analysis of explanted stent-grafts. J. Endovasc. Ther. 13, 457–467 (2006)

    Article  Google Scholar 

  34. Malina, M., Lindblad, B., Ivancev, K., Lindh, M., Malina, J., Brunkwall, J.: Endovascular AAA exclusion: will stents with hooks and barbs prevent stent-graft migration? J. Endovasc. Surg. 5, 310–317 (1998)

    Article  Google Scholar 

  35. Mohan, I.V., Harris, P.L., van Marrewijk, C.J., Laheij, R.J., How, T.V.: Factors and forces influencing stent-graft migration after endovascular aortic aneurysm repair. J. Endovasc. Ther. 9, 748–755 (2002)

    Article  Google Scholar 

  36. Molony, D.S., Callanan, A., Walsh, M.T., Kavanagh, E.K., McGloughlin, T.M.: Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft. BioMed. Eng. OnLine 8, 24 (2009). doi:10.1186/1475-925X-8-24

    Article  Google Scholar 

  37. Molony, D.S., Callanan, A., Morris, L.G., Doyle, B.J., Walsh, M.T., McGloughlin, T.M.: Geometrical enhancements for abdominal aortic stent-grafts. J. Endovasc. Ther. 15, 518–529.

    Article  Google Scholar 

  38. Morris, L., Delassus, P., Grace, P., Wallis, F., Walsh, M., McGloughlin, T.: Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through abdominal aortic aneurysms (AAA). Med. Eng. Phys. 28, 19–26 (2006)

    Article  Google Scholar 

  39. Morris, L., O’Donnell, P., Delassus, P., McGloughlin, T.: Experimental assessment of stress patterns in abdominal aortic aneurysms using the photoelastic method. Strain 40(4), 165–172 (2004)

    Article  Google Scholar 

  40. Morris, L., Delassus, P., Walsh, M., McGloughlin, T.: A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysm (AAA). J. Biomech. 37, 1087–1095 (2004)

    Article  Google Scholar 

  41. Morris, L.G.: Numerical and experimental investigation of mechanical factors in the treatment of abdominal aortic aneurysms. Ph.D. Thesis, University of Limerick (2004)

    Google Scholar 

  42. Mullins, L.: Softening of rubber by deformation. Rubber Chem. Technol. 42(1), 339–362 (1969)

    Article  Google Scholar 

  43. Murphy, E.H., Johnson, E.D., Arko, F.R.: Device-specific resistance to in vivo displacement of stent-grafts implanted with maximum iliac fixation. J. Endovasc. Ther. 14, 585–592 (2007)

    Article  Google Scholar 

  44. O’ Brien, T.P., Walsh, M.T., Morris, L.G., Grace, P.A., Kavanagh, E.G., McGloughlin, T.M.: Numerical and Experimental Techniques for the Study of Biomechanics in the Arterial System. in Biomechanical Systems Technology. World Scientific Publishing Company, pp. 233–270, Singapore, Chap. 7 (2008)

    Google Scholar 

  45. O’ Brien, T., Morris, L., McGloughlin, T.: Evidence suggests rigid aortic grafts increase systolic blood pressure: results of a preliminary study. Med. Eng. Phys. 30(1), 109–115 (2007)

    Article  Google Scholar 

  46. O’ Brien, T., Morris, L., O’ Donnell, M., Walsh, M., McGloughlin, T.: Injection-moulded models of major and minor arteries: the variability of model wall thickness owing to casting technique. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 219(5), 381–386 (2005)

    Google Scholar 

  47. Petrini, L., Migliavacca, F., Massarotti, P., Schievano, S., Dubini, G., Auricchio, F.: Computational studies of shape memory alloy behaviour in biomedical applications. J. Biomech. Eng. 127, 716–725 (2005)

    Article  Google Scholar 

  48. Raghavan, M.L., Webster, M.W., Vorp, D.A.: Ex vivo biomechanical behaviour of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24, 573–582 (1996)

    Article  Google Scholar 

  49. Ramaiah, V.G., Thompson, C.S., Shafique, S., Rodriguez, J.A., Ravi, R., DiMungo, L., Diethrich, E.B.: (2002) Crossing the Limbs: A Useful Adjunct for Successful Deployment of the AneuRx Stent-Graft. J. Endovasc. Ther. 9(5):583–586

    Article  Google Scholar 

  50. Resch, T., Malina, M., Lindblad, B., Brunkwall, J., Ivancev, K.: The impact of stent design on proximal stent-graft fixation in the abdominal aorta: an experimental study. Eur. J. Vasc. Endovasc. Surg. 20, 190–195 (2000)

    Article  Google Scholar 

  51. Roy, S.A., West, K., Rontala, R.S., Greenberg, R.K., Banerjee, R.K.: In vitro measurement and calculation of drag force on iliac limb stent-graft in a compliant arterial wall model. Mol. Cell Biomech. 4, 211–226 (2007)

    Google Scholar 

  52. Sonesson, B., Hansen, F., Lanne, T.: Abdominal aortic aneurysm: a general defect in the vasculature with focal manifestations in the abdominal aorta? J. Vasc. Surg. 26, 247–254 (1997)

    Article  Google Scholar 

  53. Sonesson, B., Lanne, T., Vernersson, E., Hansen, F.: Sex difference in the mechanical properties of the abdominal aorta in human beings. J. Vasc. Surg. 20(6):959–969 (1994)

    Article  Google Scholar 

  54. Sampaio, S.M., Panneton, J.M., Mozes, G., Andrews, J.C., Noel, A.A., Kalra, M., Bower, T.C., Cherry, K.J., Sullivan, T.M., Gloviczki, P.: AneuRx device migration: incidence, risk factors, and consequences. Ann. Vasc. Surg. 19, 178–185 (2005)

    Article  Google Scholar 

  55. Sternbergh, W.C., Money, S.R., Greenberg, R.K., Chuter, T.A.: Influence of endograft oversizing on device migration, endoleak, aneurysm shrinkage, and aortic neck dilation: results from the Zenith Multicenter Trial. J. Vasc. Surg. 39, 20–26 (2004)

    Article  Google Scholar 

  56. Sutalo, I.D., Liffman, K., Lawerence Brown, M.M.D., Semmens, J.B.: Experimental force measurement on a bifurcated endoluminal stent-graft model: comparison with theory. Vascular 13, 98–106 (2005)

    Google Scholar 

  57. Vad, S., Eskinazi, A., Corbett, T., McGloughlin, T., Vande Geest, J.: Determination of coefficient of friction for self expanding stent-grafts. J. Biomech. Eng. 132, 121007 (2010) doi:10.1115/1.4002798

    Google Scholar 

  58. Vallabhaneni, S.R., Gilling-Smith, G.L., How, T.V., Carter, S.D., Brennan, J.A., Harris, P.L.: Heterogeneity of tensile strength and matrix metalloproteinase activity in the wall of abdominal aortic aneurysms. J. Endovasc. Ther. 11(4), 494–502 (2004)

    Article  Google Scholar 

  59. Veerapen, R., Dorandeu, A., Serre, I., Berthet, J.P., Marty-Ane, C.H., Mary, H., Alric, P.: Improvement in proximal aortic endograft fixation: an experimental study using different stent-grafts in human cadaveric aortas. J. Endovasc. Ther. 10, 1101–1109 (2003)

    Article  Google Scholar 

  60. Volodos, N.L., Karpovich, I.P., Troyan, V.I., Kalashnikova, Yu.V., Shekhanin, V.E., Ternyuk, N.E., Neoneta, A.S., Ustinov, N.I., Yakovenko, L.F.: Clinical experience of the use of self-fixing synthetic prostheses for remote endoprosthetics of the thoracic and the abdominal aorta and iliac arteries through the femoral artery and as intraoperative endoprosthesis for aorta reconstruction. VASA Suppl. 33, 93–95 (1991)

    Google Scholar 

  61. Vorp, D.A., Mandarino, M., Webster, M.W., Gorcsan, J.: Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method. Cardiovasc. Surg. 4(6), 732–739 (1996)

    Article  Google Scholar 

  62. Wu, W., Qi, M., Liu, X.P., Yang, D.Z., Wang, W.Q.: Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. J. Biomech. 40, 3034–3040 (2007)

    Article  Google Scholar 

  63. Zhou, S.N., How, T.V., Black, R.A., Vallabhaneni, S.R., Mcwilliams, R., Brennan, J.A.: Measurement of pulsatile haemodynamic forces in a model of a bifurcated stent-graft for abdominal aortic aneurysm repair. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 222, 543–549 (2008)

    Article  Google Scholar 

  64. Zhou, S.S., How, T.V., Rao Vallabhaneni, S., Gilling-Smith, G.L., Brennan, J.A., Harris, P.L., McWilliams, R.: Comparison of the fixation strength of standard and fenestrated stent-grafts for endovascular abdominal aortic aneurysm repair. J. Endovasc. Ther. 14, 168–175 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim McGloughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Corbett, T., Molony, D., Kavanagh, E., Grace, P., Walsh, M., McGloughlin, T. (2011). Experimental Analysis of Endovascular Treatment of AAA and Predictors of Long Term Outcomes. In: McGloughlin, T. (eds) Biomechanics and Mechanobiology of Aneurysms. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_74

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_74

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18094-1

  • Online ISBN: 978-3-642-18095-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics