Skip to main content

Thermosensitive Polymers for Controlled Delivery of Hormones

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 8))

Abstract

Thermosensitive polymeric systems, which remain as solution at room temperature and transform into gel at body temperature, have been extensively investigated for biomedical and pharmaceutical applications. The gel depot formed at the site of injection after the administration of an aqueous polymeric solution provides several benefits over the conventional delivery systems. These thermosensitive drug delivery systems are easy to formulate by simple mixing of therapeutic agents with the aqueous polymeric solutions, easy to administer by single injection, remain stable at the physiological conditions for a definite period of time, provide excellent stability for labile biomolecules such as proteins and peptides, and maintain the controlled and sustained release profile of the incorporated agents. Most of these systems are biodegradable and biocompatible, thereby eliminating the need of surgical explantation. This chapter discusses the classification of temperature sensitive systems, their synthesis and characterization procedures and provides a survey of recent literature on the in vitro and in vivo applications of thermosensitive polymers for controlled delivery of hormones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AUC:

Area under the curve

ATRP:

Atomic transfer radical polymerization

BE:

Butyl vinyl ether

BMA:

Butyl methacrylate

CD:

Circular dichroism

CDCl3 :

Deuterated chloroform

Cmax :

Maximum plasma concentration

CMC:

Critical micelle concentration

CMT:

Critical micelle temperature

DLS:

Dyanamic light scattering

DPH:

1,6-diphenyl-1,3,5-hexatriene

D2O:

Deuterated water

DMSO-d6 :

Deuterated dimethyl sulfoxide

DSC:

Differential scanning calorimetery

EGVE:

Ethylene glycol vinyl ether

FT-IR:

Fourier transform infrared spectroscopy

G-CSF:

Granulocyte colony stimulating factor

GLP:

Glucagon-like peptide

GPC:

Gel permeation chromatography

hGH:

Human growth hormone

HP-β-CD:

Hydroxypropyl-β-cyclodextrin

HPLC:

High performance liquid chromatography

IGF:

Insulin-like growth factor

ISO:

International organization of standardization

LA/GA:

Lactic acid/Glycolic acid

LCST:

Lower critical solution temperature

LNG:

Levonorgestrel

MALDI:

Matrix-assisted laser desorption/ionization

ME:

Methoxyestradiol

Mn :

Number average molecular weight

MPA:

Methyl prednisolone

MPEG:

Methoxy poly(ethylene glycol)

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Mw :

Weight average molecular weight

NIPAAm:

N-isopropyl acrylamide

NMR:

Nuclear magnetic resonance

PAGE:

Polyacrylamide gel electrophoresis

PDEAAM:

Poly (N, N′-diethylacrylamide)

PDI:

Polydispersity index

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

pGH:

Porcine growth hormone

PLA:

Poly(lactic acid)

PLGA:

Poly(dl-lactic acid-co-glycolic acid)

PNIPAAm:

Poly(N-isopropylacrylamide)

PPO:

Poly(propylene oxide)

RAFT:

Reversible addition-fragmentation chain transfer

sCT:

Salmon calcitonin

SD:

Sprague–Dawley

SEM:

Scanning electron microscopy

SLS:

Static light scattering

TEM:

Transmission electron microscopy

TMS:

Tetramethyl silane

TSN:

Testosterone

UV:

Ultraviolet

References

  1. Agrawal, A.K., Gupta, P.N., Khanna, A., Sharma, R.K., Chandrawanshi, H.K., Gupta, N., Patil, U.K., Yadav, S.K.: Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie 65(3), 188–193 (2010)

    Google Scholar 

  2. Alexandridis, P., Holzwarth, J.F., Hatton, T.A.: Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27(9), 2414–2425 (1994)

    Article  Google Scholar 

  3. Al-Tahami, K., Singh, J.: Smart polymer based delivery systems for peptides and proteins. Recent Pat. Drug Deliv. Formul. 1(1), 65–71 (2007)

    Article  Google Scholar 

  4. Barichello, J.M., Morishita, M., Takayama, K., Nagai, T.: Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. Int. J. Pharm. 184(2), 189–198 (1999)

    Article  Google Scholar 

  5. Basu Ray, G., Chakraborty, I., Moulik, S.P.: Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Interface Sci. 294(1), 248–254 (2006)

    Article  Google Scholar 

  6. Behravesh, E., Shung, A.K., Jo, S., Mikos, A.G.: Synthesis and characterization of triblock copolymers of methoxy poly(ethylene glycol) and poly(propylene fumarate). Biomacromolecules 3(1), 153–158 (2002)

    Article  Google Scholar 

  7. Bochot, A., Fattal, E., Gulik, A., Couarraze, G., Couvreur, P.: Liposomes dispersed within a thermosensitive gel: a new dosage form for ocular delivery of oligonucleotides. Pharm. Res. 15(9), 1364–1369 (1998)

    Article  Google Scholar 

  8. Buwalda, S.J., Dijkstra, P.J., Calucci, L., Forte, C., Feijen, J.: Influence of amide versus ester linkages on the properties of eight-armed PEG–PLA star block copolymer hydrogels. Biomacromolecules 11(1), 224–232 (2010)

    Article  Google Scholar 

  9. Charman, S.A., Mason, K.L., Charman, W.N.: Techniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone. Pharm. Res. 10(7), 954–962 (1993)

    Article  Google Scholar 

  10. Chen-CHow, P., Frank, S.G.: Comparison of lidocaine release from Pluronic F-127 gels and other formulations. Acta Pharm. Suec 18(4), 239–244 (1981)

    Google Scholar 

  11. Chen, S., Pederson, D., Oak, M., Singh, J.: In vivo absorption of steroidal hormones from smart polymer based delivery systems. J. Pharm. Sci. 99(8), 3381–3388 (2010)

    Article  Google Scholar 

  12. Chen, S., Pieper, R., Webster, D.C., Singh, J.: Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int. J. Pharm. 288(2), 207–218 (2005)

    Article  Google Scholar 

  13. Chen, S., Singh, J.: Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int. J. Pharm. 295(1–2), 183–190 (2005)

    Article  Google Scholar 

  14. Chen, S., Singh, J.: In vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems. Pharm. Dev. Technol. 10(2), 319–325 (2005)

    Google Scholar 

  15. Chen, S., Singh, J.: Controlled release of growth hormone from thermosensitive triblock copolymer systems: In vitro and in vivo evaluation. Int. J. Pharm. 352(1–2), 58–65 (2008)

    Article  Google Scholar 

  16. Cho, H., Chung, D., Jeongho, A.: Poly(d, l-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(d,l-lactide-ran-epsilon-caprolactone) as parenteral drug-delivery systems. Biomaterials 25(17), 3733–3742 (2004)

    Article  Google Scholar 

  17. Cho, J.-K., Hong, K.-Y., Park, J.W., Yang, H., Song, S.-C.: Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. J. Drug Target (2010) (doi:10.3109/1061186X.2010.499461)

  18. Choi, S., Baudys, M., Kim, S.W.: Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA–PEG–PLGA in type 2 diabetic rats. Pharm. Res. 21(5), 827–831 (2004)

    Article  Google Scholar 

  19. Choi, S., Kim, S.W.: Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats. Pharm. Res. 20(12), 2008–2010 (2003)

    Article  MathSciNet  Google Scholar 

  20. Cui, Z., Lee, B.H., Vernon, B.L.: New hydrolysis-dependent thermosensitive polymer for an injectable degradable system. Biomacromolecules 8(4), 1280–1286 (2007)

    Article  Google Scholar 

  21. Dimitrov, I., Trzebicka, B., Müller, A.H., Dworak, A., Tsvetanov, C.B.: Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog. Polym. Sci. 32(11), 1275–1343 (2007)

    Article  Google Scholar 

  22. Du, J., Peng, Y., Zhang, T., Ding, X., Zheng, Z.: Study on pH-sensitive and thermosensitive polymer networks containing polyacetal segments. J. Appl. Polym. Sci. Symp. 83(14), 3002–3006 (2002)

    Article  Google Scholar 

  23. Garbern, J.C., Hoffman, A.S., Stayton, P.S.: Injectable pH- and temperature-responsive Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules 11(7), 1833–1839 (2010)

    Article  Google Scholar 

  24. Gong, C., Shi, S., Dong, P., Kan, B., Gou, M., Wang, X., Li, X., Luo, F., Zhao, X., Wei, Y., Qian, Z.: Synthesis and characterization of PEG–PCL–PEG thermosensitive hydrogel. Int. J. Pharm. 365(1–2), 89–99 (2009)

    Article  Google Scholar 

  25. Gümüsderelioglu, M., Müftüoglu, O., Gönen Karakeçili, A.: Biomodification of thermosensitive copolymer of ethylene glycol vinyl ether by RGD and insulin. React. Funct. Polym. 58(2), 149–156 (2004)

    Article  Google Scholar 

  26. Hatefi, A., Amsden, B.: Biodegradable injectable in situ forming drug delivery systems. J. Control Release 80(1–3), 9–28 (2002)

    Article  Google Scholar 

  27. Hu, D.S., Liu, H.: Structural analysis and degradation behavior in polyethylene glycol/poly(l-lactide) copolymers. J. Appl. Polym. Sci. Symp. 51(3), 473–482 (1994)

    Article  Google Scholar 

  28. Hwang, M.J., Suh, J.M., Bae, Y.H., Kim, S.W., Jeong, B.: Caprolactonic poloxamer analog: PEG–PCL–PEG. Biomacromolecules 6(2), 885–890 (2005)

    Article  Google Scholar 

  29. Ignatius, A.A., Claes, L.E.: In vitro biocompatibility of bioresorbable polymers: poly(l, dl-lactide) and poly(l-lactide-co-glycolide). Biomaterials 17(8), 831–839 (1996)

    Article  Google Scholar 

  30. International Organization for Standardization. (2007) Biological evaluation of medical devices. Geneva, Switzerland. Test for local effects after implantation Part 6.

    Google Scholar 

  31. Jagtap, R.N., Ambre, A.H.: Overview literature on matrix assisted laser desorption ionization mass spectroscopy (MALDI MS): basics and its applications in characterizing polymeric materials. Bull Mater. Sci. 28(6), 515–528 (2005)

    Article  Google Scholar 

  32. Jeong, B., Bae, Y.H., Lee, D.S., Kim, S.W.: Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645), 860–862 (1997)

    Article  Google Scholar 

  33. Jeong, B., Bae, Y.H., Kim, S.W.: Biodegradable thermosensitive micelles of PEG–PLGA–PEG triblock copolymers. Colloids Surf. B Biointerf. 16(1–4), 185–193 (1999)

    Article  Google Scholar 

  34. Jeong, B., Bae, Y.H., Kim, S.W.: Thermoreversible gelation of PEG–PLGA–PEG triblock copolymer aqueous solutions. Macromolecules 32(21), 7064–7069 (1999)

    Article  Google Scholar 

  35. Jeong, B., Kibbey, M.R., Birnbaum, J.C., Won, Y., Gutowska, A.: Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules 33(22), 8317–8322 (2000)

    Article  Google Scholar 

  36. Kim, Y.J., Choi, S., Koh, J.J., Lee, M., Ko, K.S., Kim, S.W.: Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm. Res. 18(4), 548–550 (2001)

    Article  Google Scholar 

  37. Kim, M.S., Hyun, H., Seo, K.S., Cho, Y.H., Won Lee, J., Rae Lee, C., Khang, G., Lee, H.B.: Preparation and characterization of MPEG-PCL diblock copolymers with thermo-responsive sol–gel–sol phase transition. J. Polym. Sci. A. Polym. Chem. 44, 5413–5423 (2006)

    Article  Google Scholar 

  38. Kim, M.R., Park, T.G.: Temperature-responsive and degradable hyaluronic acid/Pluronic composite hydrogels for controlled release of human growth hormone. J. Control Release 80(1–3), 69–77 (2002)

    Article  Google Scholar 

  39. Kwon, Y.M., Kim, S.W.: Biodegradable triblock copolymer microspheres based on thermosensitive sol–gel transition. Pharm. Res. 21(2), 339–343 (2004)

    Article  Google Scholar 

  40. Lee, B.H., Lee, Y.M., Sohn, Y.S., Song, S.: Synthesis and characterization of thermosensitive Poly(organophosphazenes) with methoxy-poly(ethylene glycol) and akylamines as side groups. Bull. Korean Chem. Soc. 23(4), 549–554 (2002)

    Article  Google Scholar 

  41. Lee, S.B., Russell, A.J., Matyjaszewski, K.: ATRP synthesis of amphiphilic random, gradient, and block copolymers of 2-(Dimethylamino)ethyl methacrylate and n-butyl methacrylate in aqueous media. Biomacromolecules 4(5), 1386–1393 (2003)

    Article  Google Scholar 

  42. Loh, X.J., Goh, S.H., Li, J.: New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 8(2), 585–593 (2007)

    Article  Google Scholar 

  43. Lu, G., Jun, H.W.: Diffusion studies of methotrexate in Carbopol and Poloxamer gels. Int. J. Pharm. 160(1), 1–9 (1998)

    Article  Google Scholar 

  44. Lutz, J., Akdemir, Ö., Hoth, A.: Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:  Is the age of Poly(NIPAM) over? J. Am. Chem. Soc. 128(40), 13046–13047 (2006)

    Article  Google Scholar 

  45. Mahmoud, K.: Recombinant protein production:strategic technology and a vital research tool. Res. J. Cell Mol. Biol. 1(1), 9–22 (2007)

    MathSciNet  Google Scholar 

  46. Mori, T., Shiota, Y., Minagawa, K., Tanaka, M.: Alternative approach to the design of thermosensitive polymers: The addition of hydrophobic groups to the ends of hydrophilic polyether. J. Polym. Sci. A Polym. Chem. 43(5), 1007–1013 (2005)

    Article  Google Scholar 

  47. Mortisen, D., Peroglio, M., Alini, M., Eglin, D.: Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules 11(5), 1261–1272 (2010)

    Article  Google Scholar 

  48. Müller, R.H., Rühl, D., Runge, S., Schulze-Forster, K., Mehnert, W.: Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res. 14(4), 458–462 (1997)

    Article  Google Scholar 

  49. Paavola, A., Kilpeläinen, I., Yliruusi, J., Rosenberg, P.: Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int. J. Pharm. 199(1), 85–93 (2000)

    Article  Google Scholar 

  50. Packhaeuser, C.B., Schnieders, J., Oster, C.G., Kissel, T.: In situ forming parenteral drug delivery systems: An overview. Eur. J. Pharm. Biopharm. 58(2), 445–455 (2004)

    Article  Google Scholar 

  51. Park, K.M., Bae, J.W., Joung, Y.K., Shin, J.W., Park, K.D.: Nano-aggregate of thermosensitive chitosan-Pluronic for sustained release of hydrophobic drug. Colloids Surf. B Biointerf. 63(1), 1–6 (2008)

    Article  Google Scholar 

  52. Park, M., Chun, C., Ahn, S., Ki, M., Cho, C., Song, S.: Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery. Biomaterials 31(6), 1349–1359 (2010)

    Article  Google Scholar 

  53. Park, S.Y., Chung, H.J., Lee, Y., Park, T.G.: Injectable and sustained delivery of human growth hormone using chemically modified Pluronic copolymer hydrogels. Biotechnol. J. 3(5), 669–675 (2008)

    Article  Google Scholar 

  54. Park, Y., Yong, C.S., Kim, H., Rhee, J., Oh, Y., Kim, C., Choi, H.: Effect of sodium chloride on the release, absorption and safety of diclofenac sodium delivered by poloxamer gel. Int. J. Pharm. 263(1–2), 105–111 (2003)

    Article  Google Scholar 

  55. Ramkissoon-Ganorkar, C., Liu, F., Baudys, M., Kim, S.W.: Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight. J. Control Release 59(3), 287–298 (1999)

    Article  Google Scholar 

  56. Ruel-Gariépy, E., Leroux, J.: In situ-forming hydrogels-review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58(2), 409–426 (2004)

    Article  Google Scholar 

  57. Seong, J., Jun, Y.J., Kim, B.M., Park, Y.M., Sohn, Y.S.: Synthesis and characterization of biocompatible poly(organophosphazenes) aiming for local delivery of protein drugs. Int. J. Pharm. 314(1), 90–96 (2006)

    Article  Google Scholar 

  58. Shive, M.S., Anderson, J.M.: Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28(1), 5–24 (1997)

    Article  Google Scholar 

  59. Singh, S., Webster, D.C., Singh, J.: Thermosensitive polymers: synthesis, characterization, and delivery of proteins. Int. J. Pharm. 341(1–2), 68–77 (2007)

    Article  Google Scholar 

  60. Soga, O., van Nostrum, C.F., Ramzi, A., Visser, T., Soulimani, F., Frederik, P.M., Bomans, P.H., Hennink, W.E.: Physicochemical characterization of degradable thermosensitive polymeric micelles. Langmuir 20(21), 9388–9395 (2004)

    Article  Google Scholar 

  61. Soga, O., van Nostrum, C.F., Fens, M., Rijcken, C.J.F., Schiffelers, R.M., Storm, G., Hennink, W.E.: Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control Release 103(2), 341–353 (2005)

    Article  Google Scholar 

  62. Stile, R.A., Burghardt, W.R., Healy, K.E.: Synthesis and characterization of injectable Poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 32(22), 7370–7379 (1999)

    Article  Google Scholar 

  63. Tai, H., Howard, D., Takae, S., Wang, W., Vermonden, T., Hennink, W.E., Stayton, P.S., Hoffman, A.S., Endruweit, A., Alexander, C., Howdle, S.M., Shakesheff, K.M.: Photo-cross-linked hydrogels from thermoresponsive PEGMEMA–PPGMA–EGDMA copolymers containing multiple methacrylate groups: mechanical property, swelling, protein release, and cytotoxicity. Biomacromolecules 10(10), 2895–2903 (2009)

    Article  Google Scholar 

  64. Tai, H., Wang, W., Vermonden, T., Heath, F., Hennink, W.E., Alexander, C., Shakesheff, K.M., Howdle, S.M.: Thermoresponsive and photocrosslinkable PEGMEMA–PPGMA–EGDMA copolymers from a one-step ATRP synthesis. Biomacromolecules 10(4), 822–828 (2009)

    Article  Google Scholar 

  65. Tang, Y., Singh, J.: Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein. Int. J. Pharm. 365(1–2), 34–43 (2009)

    Article  Google Scholar 

  66. Tang, Y., Singh, J.: Thermosensitive drug delivery system of salmon calcitonin: In vitro release, in vivo absorption, bioactivity and therapeutic efficacies. Pharm. Res. 27(2), 272–284 (2010)

    Article  Google Scholar 

  67. Toti, U.S., Moon, S.H., Kim, H.Y., Jun, Y.J., Kim, B.M., Park, Y.M., Jeong, B., Sohn, Y.S.: Thermosensitive and biocompatible cyclotriphosphazene micelles. J. Control Release 119(1), 34–40 (2007)

    Article  Google Scholar 

  68. Vermonden, T., Besseling, N.A.M., van Steenbergen, M.J., Hennink, W.E.: Rheological studies of thermosensitive triblock copolymer hydrogels. Langmuir 22(24), 10180–10184 (2006)

    Article  Google Scholar 

  69. Vermonden, T., Jena, S.S., Barriet, D., Censi, R., van der Gucht, J., Hennink, W.E., Siegel, R.A.: Macromolecular diffusion in self-assembling biodegradable thermosensitive hydrogels. Macromolecules 43(2), 782–789 (2010)

    Article  Google Scholar 

  70. Wang, W.: Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185(2), 129–188 (1999)

    Article  Google Scholar 

  71. Wang, F., Li, Z., Khan, M., Tamama, K., Kuppusamy, P., Wagner, W.R., Sen, C.K., Guon, J.: Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater. 6(6), 1978–1991 (2010)

    Article  Google Scholar 

  72. Wang, Z., Xu, X., Chen, C., Yun, L., Song, J., Zhang, X., Zhuo, R.: In situ formation of thermosensitive PNIPAAm-based hydrogels by Michael-type addition reaction. ACS Appl. Mater. Interf. 2(4), 1009–1018 (2010)

    Article  Google Scholar 

  73. Wasan, K.M., Subramanian, R., Kwong, M., Goldberg, I.J., Wright, T., Johnston, T.P.: Poloxamer 407-mediated alterations in the activities of enzymes regulating lipid metabolism in rats. J. Pharm. Pharm. Sci. 6(2), 189–197 (2003)

    Google Scholar 

  74. Wei, X., Gong, C., Gou, M., Fu, S., Guo, Q., Shi, S., Luo, F., Guo, G., Qiu, L., Qiu, Z.: Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int. J. Pharm. 381(1), 1–18 (2009)

    Article  Google Scholar 

  75. Wu, J., Wei, W., Wang, L., Su, Z., Ma, G.: A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28(13), 2220–2232 (2007)

    Article  Google Scholar 

  76. Xu, X., Wang, B., Wang, Z., Cheng, S., Zhang, X., Zhuo, R.: Fabrication of fast responsive, thermosensitive poly(N-isopropylacrylamide) hydrogels by using diethyl ether as precipitation agent. J. Biomed. Mater. Res. A 86(4), 1023–1032 (2008)

    Google Scholar 

  77. Yu, L., Zhang, Z., Zhang, H., Ding, J.: Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules 11(8), 2169–2178 (2010)

    Article  Google Scholar 

  78. Yun, M., Choi, H., Jung, J., Kim, C.: Development of a thermo-reversible insulin liquid suppository with bioavailability enhancement. Int. J. Pharm. 189(2), 137–145 (1999)

    Article  Google Scholar 

  79. Zentner, G.M., Rathi, R., Shih, C., McRea, J.C., Seo, M.H., Oh, H., Rhee, B.G., Mestecky, J., Moldoveanu, Z., Morgan, M., Weitman, S.: Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control Release 72(1–3), 203–215 (2001)

    Article  Google Scholar 

  80. Zhang, L., Zhu, W., Song, L., Wang, Y., Jiang, H., Xian, S., Ren, Y.: Effects of hydroxylpropyl-beta-cyclodextrin on in vitro insulin stability. Int. J. Mol. Sci. 10(5), 2031–2040 (2009)

    Article  Google Scholar 

  81. Zhou, G., Harruna, I.I., Ingram, C.W.: Ruthenium-centered thermosensitive polymers. Polymer 46(24), 10672–10677 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, Y., Oak, M., Mandke, R., Layek, B., Sharma, G., Singh, J. (2011). Thermosensitive Polymers for Controlled Delivery of Hormones. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_65

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics