Skip to main content

Mechanobiological Modelling of Angiogenesis: Impact on Tissue Engineering and Bone Regeneration

  • Chapter
  • First Online:
Book cover Computational Modeling in Tissue Engineering

Abstract

Angiogenesis is essential for complex biological phenomena such as tissue engineering and bone repair. The ability to heal in these processes strongly depends on the ability of new blood vessels to grow. Capillary growth and its impact on human health has been focus of intense research from an in vivo, in vitro and in silico perspective. In fact, over the last decade many mathematical models have been proposed to understand and simulate the vascular network. This review addresses the role of the vascular network in well defined and controlled processes such as wound healing or distraction osteogenesis and covers the connection between vascularization and bone, starting with the biology of vascular ingrowth, moving through its impact on tissue engineering and bone regeneration, and ending with repair. Furthermore, we also describe the most recent in-silico models proposed to simulate the vascular network within bone constructs. Finally, discrete as well as continuum approaches are analyzed from a computational perspective and applied to three distinct phenomena: wound healing, distraction osteogenesis and individual cell migration in 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors apologize any related reference with the present work which remained uncited along the text.

References

  1. Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)

    Article  Google Scholar 

  2. Anderson, A., Chaplain, M.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)

    Article  MATH  Google Scholar 

  3. Aronson, J.: Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac. J. 31, 473–81 (1994)

    Article  Google Scholar 

  4. Azuaje, F.: Computational discrete models of tissue growth and regeneration. Brief Bioinform. 12, 64–77 (2011)

    Article  Google Scholar 

  5. Balding, D., McElwain, D.L.S.: A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73 (1985)

    Article  Google Scholar 

  6. Basilico, C., Moscatelli, D.: The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115–165 (1992)

    Article  Google Scholar 

  7. Bauer, A.L., Jackson, T.L., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92, 3105–21 (2007)

    Article  Google Scholar 

  8. Beamer, B., Hettrich, C., Lane, J.: Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J. 6, 85–94 (2010)

    Article  Google Scholar 

  9. Bluteau, G., Julien, M., Magne, D.: VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone 40, 568–576 (2007)

    Article  Google Scholar 

  10. Boccaccio, A., Pappalettere, C., Kelly, D.J.: The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann. Biomed. Eng. 35, 1940–1960 (2007)

    Article  Google Scholar 

  11. Boccaccio, A., Prendergast, P.J., Pappalettere, C., Kelly, D.J.: Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med. Biol. Eng. Comput. 46, 283–298 (2008)

    Article  Google Scholar 

  12. Borau, C., Kamm, R.D., García-Aznar, J.M.: Mechano-sensing and cell migration: a 3D model approach. Phys. Biol. 8, Article No:066008 (2011)

    Google Scholar 

  13. Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T., Chancerelle, Y., Domard, A.: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28, 3478–3488 (2007)

    Article  Google Scholar 

  14. Brunner, U.H., Cordey, J., Schweiberer, L., Perren, S.M.: Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation. Clin. Orthop. Relat. Res. 301, 147–155 (1994)

    Google Scholar 

  15. Byrne, H.M., Chaplain, M.A.J., Evans, D.L., Hopkinson, I.: Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment. J. Theor. Med. 2, 175–197 (2000)

    Article  MATH  Google Scholar 

  16. Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)

    Article  Google Scholar 

  17. Carvalho, R.S., Einhorn, T.A., Lehmann, W., Edgar, C., Al-Yamani, A., Apazidis, A., Pacicca, D., Clemens, T.L., Gerstenfeld, L.C.: The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 34, 849–861 (2004)

    Article  Google Scholar 

  18. Chaplain, M.A.J., Byrne, H.M.: Mathematical modelling of wound healing and tumour growth-2 sides of the same coin. Wounds Compend. Clin. Res. Pract. 8, 42–48 (1996)

    Google Scholar 

  19. Chaplain, M.A.: Mathematical modeling of angiogenesis. J. Neurooncol. 50, 37–51 (2000)

    Article  Google Scholar 

  20. Chaplain, M.A.J., McDougall, S.R., Anderson, A.R.A.: Mathematical modelling of tumorinduced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)

    Article  Google Scholar 

  21. Checa, S., Prendergast, P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37, 129–145 (2009)

    Article  Google Scholar 

  22. Chen, G., Niemeyer, F., Wehner, T., Simon, U., Schuetz, M., Pearcy, M., Claes, L.: Simulation of the nutrient supply in fracture healing. J. Biomech. 42, 2575–2583 (2009)

    Article  Google Scholar 

  23. Choi, I.H., Ahn, J.H., Chung, C.Y., Cho, T.J.: Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J. Orthop. Res. 18, 698–705 (2000)

    Article  Google Scholar 

  24. Chu, T.W., Wang, Z.G., Zhu, P.F., Jiao, W.C., Wen, J.L., Gong, S.G.: Effect of vascular endothelial growth factor in fracture healing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 16, 75–78 (2002)

    Google Scholar 

  25. Claes L.E., Heigele C.A. (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3):255–266

    Article  Google Scholar 

  26. Conway, E.M., Collen, D., Carmeliet, P.: Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–21 (2001)

    Article  Google Scholar 

  27. Davis, G.E., Senger, D.R.: Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1097 (2005)

    Article  Google Scholar 

  28. Deckers, M.M., van Bezooijen, R.L., van der Horst, G., Hoogendam, J., van Der Bent, C., Papapoulos, S.E., Löwik, C.W.: Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143, 1545–1553 (2002)

    Article  Google Scholar 

  29. Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)

    Article  Google Scholar 

  30. Eckardt, H., Bundgaard, K.G., Christensen, K.S., Lind, M., Hansen, E.S., Hvid, I.: Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J. Orthop. Res. 21, 335–340 (2003)

    Article  Google Scholar 

  31. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol. 160, 97–133 (1993)

    Article  Google Scholar 

  32. Fang, T.D., Salim, A., Xia, W., Nacamuli, R.P., Guccione, S., Song, H.M., Carano, R.A., Filvaroff, E.H., Bednarski, M.D., Giaccia, A.J., Longaker, M.T.: Angiogenesis is required for successful bone induction during distraction osteogenesis. J. Bone Miner. Res. 20, 1114–1124 (2005)

    Article  Google Scholar 

  33. Ferguson, C., Alpern, E., Miclau, T., Helms, J.A.: Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev. 87, 57–66 (1999)

    Article  Google Scholar 

  34. Ferrara, N.: Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004)

    Article  Google Scholar 

  35. Flegg, J.A., McElwain, D.L.S., Byrne, H.M., Turner, I.W.: A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. PLoS Comput. Biol. 5, e1000451 (2009)

    Article  MathSciNet  Google Scholar 

  36. Folkman, J.: Tumour angiogenesis: therapeutic implications. New Engl. J. Med. 285, 1182–1186 (1971)

    Article  Google Scholar 

  37. Folkman, J., Shing, Y.: Angiogenesis. J. Biol. Chem. 267, 10931–10934 (1992)

    Google Scholar 

  38. Folkman, J., Brem, H.: Angiogenesis and inflamation. In: Gallin, J.I., Goldstein, I.M., Snyderman, R. (eds) Inflamation: Basic Principles and Clinical Correlates, pp. 821–839. Raven Press, New York (1992)

    Google Scholar 

  39. Folkman, J.: Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007)

    Article  Google Scholar 

  40. Friedl, P., Bröcker, E.B.: The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57, 41–64 (2000)

    Article  Google Scholar 

  41. Gaffney, E.A., Pugh, K., Maini, P.K., Arnold, F.: Investigating a simple model of cutaneous wound healing angiogenesis. J. Theor. Biol. 45, 337–374 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Gerber, H.P., Vu, T.H., Ryan, A.M.: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999)

    Article  Google Scholar 

  43. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., Betsholtz, C.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell. Biol. 161, 1163–1177 (2003)

    Article  Google Scholar 

  44. Geris, L., Gerisch, A., Vander Sloten, J., Weiner, R., Van Oosterwyck, H.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 25, 137–158 (2008)

    Article  MathSciNet  Google Scholar 

  45. Geris, L., Van Liedekerke, P., Smeets, B., Tijskens, E., Ramon, H.: A cell based modelling framework for skeletal tissue engineering applications. J. Biomech. 43(5), 887–892 (2010)

    Article  Google Scholar 

  46. Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L., Graves, D.T., Einhorn, T.A.: Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88, 873–884 (2003)

    Article  Google Scholar 

  47. Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven arrangement of biological cells. Phys. Rev. E 47, 2128–2154 (1993)

    Article  Google Scholar 

  48. Glowacki, J.: Angiogenesis in fracture repair. Clin. Orthop. 355, S82–S89 (1998)

    Google Scholar 

  49. Gómez-Benito, M.J., García-Aznar, J.M., Kuiper, J.H., Doblaré, M.: Influence of fracture gap size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235, 105–119 (2005)

    Article  Google Scholar 

  50. Grellier, M., Bordenave, L., Amedee, J.: Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol. 27, 562–571 (2009)

    Article  Google Scholar 

  51. Hausman, M.R., Schaffler, M.B., Majeska, R.J.: Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29, 560–564 (2001)

    Article  Google Scholar 

  52. Hopf, H.W., Gibson, J.J., Angeles, A.P., Constant, J.S., Feng, J.J., Rollins, M.D., Zamirul Hussain, M., Hunt, T.K.: Hyperoxia and angiogenesis. Wound Repair Regen. 13, 558–564 (2005)

    Article  Google Scholar 

  53. Hunt, T.K., Knighton, D.R., Thakral, K.K., Goodson, W.H., Andrews, W.S.: Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated macrophages. Surgery 96, 48–54 (1984)

    Google Scholar 

  54. Ilizarov, G.A., Soibel’man, L.M.: Clinical and experimental data on bloodless lengthening of lower extremities. Eksp Khir Anesteziol 14, 27–32 (1969)

    Google Scholar 

  55. Ilizarov, G.A.: The tension-stress effect on the genesis and growth of tissues. Part I: the influence of stability of fixation and soft-tissue preservation. Clin. Orthop. 238, 249–281 (1989)

    Google Scholar 

  56. Ilizarov, G.A., Ledyaev, V.I.: The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments. Clin. Orthop. 280, 7–10 (1992)

    Google Scholar 

  57. Ilizarov, G.A.: Transosseous Osteosynthesis. Springer, Heidelberg (1992)

    Google Scholar 

  58. Isaksson, H., Comas, O., Van Donkelaar, C.C., Mediavilla, J., Wilson, W., Huiskes, R., Ito, K.: Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40, 2002–2011 (2007)

    Article  Google Scholar 

  59. Jain, R.K.: Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003)

    Article  Google Scholar 

  60. Jamali, Y., Azimi, M., Mofrad, M.R.: A sub-cellular viscoelastic model for cell population mechanics. PLoS ONE 5(8), pii:e12097 (2010)

    Google Scholar 

  61. Javierre, E., Vermolen, F.J., Vuik, C., Zwaag, S.: Numerical modelling of epidermal wound healing. In: Kunisch, K., Of, G., Steinbach, O. (eds) Numerical Mathematics and Advanced Applications, pp. 83–90. Springer, Berlin (2008)

    Chapter  Google Scholar 

  62. Javierre, E., Moreo, P., Doblar, M., Garca-Aznar, J.M.: Numerical modeling of a mechano-chemical theory for wound contraction analysis. Int. J. Solids Struct. 46, 3597–3606 (2009)

    Article  MATH  Google Scholar 

  63. Josko, J., Gwozdz, B., Jedrzejowska-Szypulka, H.: Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med. Sci. Monit. 6, 1047–1052 (2000)

    Google Scholar 

  64. Klemke, R.L., Cai, S., Giannini, A.L., Gallagher, P.J., de Lanerolle, P., Cheresh, D.A.: Regulation of cell motility by mitogen-activated protein kinase. J. Cell. Biol. 137, 481–492 (1997)

    Article  Google Scholar 

  65. Kneser, U., Stangenberg, L., Ohnolz, J., Buettner, O., Stern-Strater, J., Möbest, D., Horch, R.E., Stark, G.B., Schaefer, D.J.: Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J. Cell. Mol. Med. 10, 695–707 (2006)

    Article  Google Scholar 

  66. Le, A.X., Miclau, T., Hu, D., Helms, J.A.: Molecular aspects of healing in stabilized and non-stabilized fractures. J. Orthop. Res. 19, 78–84 (2001)

    Article  Google Scholar 

  67. Levine, H.A., Sleeman, B.D., Nilsen-Hamilton, M.: A mathematical model for the roles of pericytes and macrophages in angiogenesis. Part I: the role of protease inhibitors in preventing angiogenesis. Math. Biosci. 168, 77–115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  68. Levine, H.A., Tucker, A.L., Nilsen-Hamilton, M.: A mathematical model for the role of cell signal transduction in the initiation and inhibition of angiogenesis. Growth Factors 20, 155–175 (2002)

    Article  Google Scholar 

  69. Li, S., Huang, N.F., Hsu, S.: Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 96, 1110–1126 (2005)

    Article  Google Scholar 

  70. Lo, C., Wang, H., Dembo, M., Wang, Y.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)

    Article  Google Scholar 

  71. Macklin, P., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Cristini, V., Lowengrub, J.: Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58, 765–798 (2009)

    Article  MathSciNet  Google Scholar 

  72. Maggelakis, S.: A mathematical model of tissue replacement during epidermal wound healing. Appl. Math. Model. 27, 189–196 (2003)

    Article  MATH  Google Scholar 

  73. Mantzaris, N., Webb, S., Othmer, H.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49, 111–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  74. Marti, H.H.: Angiogenesis–a self-adapting principle in hypoxia. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis, pp. 163–180. Birkhauser, Switzerland (2005)

    Chapter  Google Scholar 

  75. McCarthy, J.G., Schreiber, J., Karp, N., Thorne, C.H., Grayson, B.H.: Lengthening the human mandible by gradual distraction. Plast. Reconstr. Surg. 89, 1–8 (1992)

    Google Scholar 

  76. McCarthy, I.: The physiology of bone blood flow: a review. J. Bone Joint Surg. Am. 88, 4–9 (2006)

    Article  Google Scholar 

  77. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A.: Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002)

    Article  Google Scholar 

  78. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006)

    Article  MathSciNet  Google Scholar 

  79. Merks, R.M.H., Glazier, J.A.: Dynamic mechanisms of blood vessel growth. Nonlinear 19, C1–C10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  80. Merks, R.M.H., Brodsky, S.V., Goligorksy, M.S., Newman, S.A., Glazier, J.A.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44–54 (2006)

    Article  Google Scholar 

  81. Merks, R.M., Perryn, E.D., Shirinifard, A., Glazier, J.A.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4, e1000163 (2008)

    Article  MathSciNet  Google Scholar 

  82. Merks, R.M.H., Koolwijk, P.: Modeling Morphogenesis in silico and in vitro: towards quantitative, predictive, cellbased modeling. Math. Model. Nat. Phenom. 4, 149–171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. Mikos, A.G., Leite, S.M., Vacanti, J.P., Langer, R.: Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42, 716–723 (1993)

    Article  Google Scholar 

  84. Milde, F., Bergdorf, M., Koumoutsakos, P.: A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys. J. 95, 3146–3160 (2008)

    Article  Google Scholar 

  85. Moreo, P., Garca-Aznar, J.M., Doblar, M.: Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomaterialia 4, 613–621 (2008)

    Article  Google Scholar 

  86. Nomi, M., Atala, A., Coppi, P.D., Soker, S.: Principals of neovascularization for tissue engineering. Mol. Aspects Med. 23, 463–483 (2002)

    Article  Google Scholar 

  87. Oberringer, M., Jennevein, M., Matsch, S.E., Pohlemann, T., Seekamp, A.: Different cell cycle responses of wound healing protagonists to transient in vitro hypoxia. Histochem. Cell. Biol. 123, 595–603 (2005)

    Article  Google Scholar 

  88. Olsen, L., Sherratt, J.A., Maini, P.K., Arnold, F.: A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol. 14, 261–281 (1997)

    Article  MATH  Google Scholar 

  89. Orme, M.E., Chaplain, M.A.: A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J. Math. Appl. Med. Biol. 13, 73–98 (1996)

    Article  MATH  Google Scholar 

  90. Orme, M.E., Chaplain, M.A.: Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. Math. Appl. Med. Biol. 14, 189–205 (1997)

    Article  MATH  Google Scholar 

  91. Owen, M.R., Alarcón, T., Maini, P.K., Byrne, H.M.: Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009)

    Article  MathSciNet  Google Scholar 

  92. Pacicca, D.M., Patel, N., Lee, C., Salisbury, K., Lehmann, W., Carvalho, R., Gerstenfeld, L.C., Einhorn, T.A.: Expression of angiogenic factors during distraction osteogenesis. Bone 33, 889–898 (2003)

    Article  Google Scholar 

  93. Palsson, E.: A three-dimensional model of cell movement in multicellular systems. Future Gener. Comput. Syst. 17, 835–852 (2001)

    Article  MATH  Google Scholar 

  94. Peirce, S.M.: Computational and mathematical modeling of angiogenesis. Microcirculation 15, 739–751 (2008)

    Article  Google Scholar 

  95. Peng, H., Wright, V., Usas, A., Gearhart, B., Shen, H.C., Cummins, J., Huard, J.: Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 110, 751–759 (2002)

    Google Scholar 

  96. Pereira, C., Gold, W., Herndon, D.: Review paper: burn coverage technologies: current concepts and future directions. J. Biomater. Appl. 22, 101–121 (2007)

    Article  Google Scholar 

  97. Pérez, M., Prendergast, P.J.: Random-walk model of cell-dispersal included in mechanobiological simulation of tissue differentiation. J. Biomech. 40, 2244–2253 (2007)

    Article  Google Scholar 

  98. Pettet, G.J., Byrne, H.M., Mcelwain, D.L.S., Norbury, J.: A model of wound-healing angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (1996)

    Article  MATH  Google Scholar 

  99. Pelham, R.J., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13661–13665 (1997)

    Article  Google Scholar 

  100. Pettet, G., Chaplain, M.A.J., Mcelwain, D.L.S., Byrne, H.M.: On the role of angiogenesis in wound healing. Proc. R Soc. Lond. Ser. B 263, 1487–1493 (1996)

    Article  Google Scholar 

  101. Prendergast, P.J., Huiskes, R., Soballe, K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. ESB Research Award 1996. J. Biomech. 30, 539–548 (1997)

    Article  Google Scholar 

  102. Reina-Romo, E., Gómez-Benito, M.J., García-Aznar, J.M., Domínguez, J., Doblaré, M.: Modeling distraction osteogenesis: analysis of the distraction rate. Biomech. Model. Mechanobiol. 8, 323–335 (2009)

    Article  Google Scholar 

  103. Reina-Romo, E., Gómez-Benito, M.J., García-Aznar, J.M., Domínguez, J., Doblaré, M.: Growth mixture model of distraction osteogenesis: effect of pre-traction stresses. Biomech. Model. Mechanobiol. 9, 103–115 (2010)

    Article  Google Scholar 

  104. Rockwood, C.A., Green, D.P., Bucholz, R.W., Heckman, J.D., Court-Brown, C.M., Koval, K.J., Tornetta, P.: Rockwood and green’s fractures. In: Adults: Rockwood, Green, and Wilkins’ Fractures. Lippincott Williams & Wilkins, ISBN 0781746361 (2006)

    Google Scholar 

  105. Ryan, T.J.: Biochemical consequences of mechanical forces generated by distension and distortion. J. Am. Acad. Dermatol. 21, 115–130 (1989)

    Article  Google Scholar 

  106. Safran, M., Kaelin, W.G.J.: HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest. 111, 779–783 (2003)

    Google Scholar 

  107. Sanz-Herrera, J.A., Moreo, P., Garca-Aznar, J.M., Doblar, M.: HOn the effect of substrate curvature on cell mechanics. Biomaterials 30(34), 6674–6686 (2009)

    Article  Google Scholar 

  108. Schugart, R.C., Friedman, A., Zhao, R., Sen, C.K.: Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc. Natl. Acad. Sci. USA 105, 2628–2633 (2008)

    Article  Google Scholar 

  109. Schwarz, U.S., Bischofs, I.B.: Physical determinants of cell organization in soft media. Med. Eng. Phys. 27, 763–772 (2005)

    Article  Google Scholar 

  110. Semenza, G.L., Wang, G.L.: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992)

    Google Scholar 

  111. Sen, C.K., Gordillo, G.M., Roy, S., Kirsner, R., Lambert, L., Hunt, T.K., Gottrup, F., Gurtner, G.C., Longaker, M.T.: Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17, 763–771 (2009)

    Article  Google Scholar 

  112. Shefelbine, S.J., Augat, P., Claes, L., Simon, U.: Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J. Biomech. 38, 2440–2450 (2005)

    Article  Google Scholar 

  113. Simon, U., Augat, P., Utz, M., Claes, L.: A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput. Methods Biomech. Biomed. Eng. 14, 79–93 (2011)

    Article  Google Scholar 

  114. Stéphanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model. 41, 1137–1156 (2005)

    Article  MATH  Google Scholar 

  115. Stéphanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comput. Model. 44, 96–123 (2006)

    Article  MATH  Google Scholar 

  116. Stokes, C.L., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)

    Article  Google Scholar 

  117. Street, J., Winter, D., Wang, J.H., Wakai, A., McGuinness, A., Redmond, H.P.: Is human fracture hematoma inherently angiogenic? Clin. Orthop. 378, 224–237 (2000)

    Article  Google Scholar 

  118. Street, J.T., Wang, J.H., Wu, Q.D., Wakai, A., McGuinness, A., Redmond, H.P.: The angiogenic response to skeletal injury is preserved in the elderly. J. Orthop. Res. 19, 1057–1066 (2001)

    Article  Google Scholar 

  119. Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F.V. Jr, Ferrara, N., Steinmetz, H., Hoeffel, J., Cleland, J.L., Daugherty, A., van Bruggen, N., Redmond, H.P., Carano, R.A., Filvaroff, E.H.: Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99, 9656–9661 (2002)

    Article  Google Scholar 

  120. Torpy, J.M., Lynm, C., Glass, R.M.: JAMA patient page. Burn Inj JAMA 302:1828 (2009)

    Google Scholar 

  121. Tsopanoglou, N.E., Andriopoulou, P., Maragoudakis, M.E.: On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3-integrin. Am. J. Physiol. Cell. Physiol. 283, C1501–C1510 (2002)

    Google Scholar 

  122. Willett, C.G., Boucher, Y., di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung, D.C., Sahani, D.V., Kalva, S.P., Kozin, S.V., Mino, M., Cohen, K.S., Scadden, D.T., Hartford, A.C., Fischman, A.J., Clark, J.W., Ryan, D.P., Zhu, A.X., Blaszkowsky, L.S., Chen, H.X., Shellito, P.C., Lauwers, G.Y., Jain, R.K.: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004)

    Article  Google Scholar 

  123. Wood, L., Kamm, R., Asada, H.: Stochastic modeling and identification of emergent behaviors of an Endothelial Cell population in angiogenic pattern formation. Int. J. Robot. Res. 30, 659–677 (2011)

    Article  Google Scholar 

  124. Xue, C., Friedman, A., Sen, C.K.: A mathematical model of ischemic cutaneous wounds. Proc. Natl. Acad. Sci. USA 106, 16782–16787 (2009)

    Article  Google Scholar 

  125. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., Holash, J.: Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000)

    Article  Google Scholar 

  126. Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y., Nomura, S.: Three modes of ossification during distraction osteogenesis in the rat. J. Bone Joint Surg. Br. 79, 824–830 (1997)

    Article  Google Scholar 

  127. Zaman, M.H., Kamm, R.D., Matsudaira, P., Lauffenburger, D.A.: Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397 (2005)

    Article  Google Scholar 

  128. Zelzer, E., McLean, W., Ng, Y.S., Fukai, N., Reginato, A.M., Lovejoy, S., D’Amore, P.A., Olsen, B.R.: Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129, 1893–1904 (2002)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the project part financed by the European Union (European Regional Development Fund) through the grant DPI 2009-14115-C03-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Reina-Romo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reina-Romo, E. et al. (2011). Mechanobiological Modelling of Angiogenesis: Impact on Tissue Engineering and Bone Regeneration. In: Geris, L. (eds) Computational Modeling in Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_111

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_111

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32562-5

  • Online ISBN: 978-3-642-32563-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics