Skip to main content

Factor of Risk for Fracture

  • Chapter
  • First Online:
  • 1973 Accesses

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 5))

Abstract

In considering the risk of fracture, both the loading applied to a bone and strength of the bone are of importance. A conceptually simple approach for considering both loading and strength is the factor of risk, Φ, which is the ratio of applied load to failure load for a particular loading scenario. Theoretically a fracture will occur if Φ ≥ 1. The factor of risk may provide a better measure for risk of fracture than current clinical measures such as bone mineral density. However, the challenges of accurately determining both applied load and failure load are significant. A number of studies have examined factor of risk for hip, vertebral and distal forearm fractures. At all three locations, factor of risk has been found to increase with age, and to be associated with incident or prevalent fractures. While some studies show promising results, the factor of risk has not been consistently better than bone mineral density alone in predicting the risk of fracture. However, it should be noted that the approaches used to estimate applied load and failure load in most studies have been relatively simple. Furthermore, only a few loading conditions have been investigated, primarily fall impact to the side for the hip, forward flexion/lifting for the vertebral body and forward fall onto the hand for the distal forearm. Thus, in spite of its limitations and challenges, factor of risk may still provide significant insight into the etiology of osteoporotic fractures, especially as methods for determining bone loading and strength improve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    odds ratio (OR) is defined as the odds of an event occurring in one group, divided by the odds of the it occurring in another group.

References

  1. Arjmand, N., Shirazi-Adl, A.: Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks. Med. Eng. Phys. 28(6), 504–514 (2006)

    Article  Google Scholar 

  2. Boutroy, S., Van Rietbergen, B., Sornay-Rendu, E., Munoz, F., Bouxsein, M.L., Delmas, P.D.: Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 23(3), 392–399 (2008). doi:10.1359/jbmr.071108

    Article  Google Scholar 

  3. Bouxsein, M.: Biomechanics of age-related fractures. In: Marcus, R., Feldman, D., Nelson, D., Rosen, C. (eds.) Osteoporosis, vol 1, vol. 3, pp. 601–616. Elsevier Academic Press, San Diego (2007)

    Google Scholar 

  4. Bouxsein, M.L., Coan, B.S., Lee, S.C.: Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 25(1), 49–54 (1999). doi:S8756-3282(99)00093-9

    Article  Google Scholar 

  5. Bouxsein, M.L., Melton 3rd, L.J., Riggs, B.L., Muller, J., Atkinson, E.J., Oberg, A.L., Robb, R.A., Camp, J.J., Rouleau, P.A., McCollough, C.H., Khosla, S.: Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J. Bone Miner. Res. 21(9), 1475–1482 (2006)

    Article  Google Scholar 

  6. Bouxsein, M.L., Szulc, P., Munoz, F., Thrall, E., Sornay-Rendu, E., Delmas, P.D.: Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J. Bone Miner. Res. 22(6), 825–831 (2007). doi:10.1359/jbmr.070309

    Article  Google Scholar 

  7. Burge, R., Dawson-Hughes, B., Solomon, D.H., Wong, J.B., King, A., Tosteson, A.: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22(3), 465–475 (2007). doi:10.1359/jbmr.061113

    Article  Google Scholar 

  8. Cheng, X.G., Lowet, G., Boonen, S., Nicholson, P.H., Brys, P., Nijs, J., Dequeker, J.: Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20(3), 213–218 (1997). doi:S8756328296003833

    Article  Google Scholar 

  9. Chiu, J., Robinovitch, S.N.: Prediction of upper extremity impact forces during falls on the outstretched hand. J. Biomech. 31(12), 1169–1176 (1998)

    Article  Google Scholar 

  10. Cody, D.D., Gross, G.J., Hou, F.J., Spencer, H.J., Goldstein, S.A., Fyhrie, D.P.: Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32(10), 1013–1020 (1999). S0021929099000998[pii]

    Article  Google Scholar 

  11. Cooper, C., Atkinson, E.J., O’Fallon, W.M., Melton 3rd, L.J.: Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J. Bone Miner. Res. 7(2), 221–227 (1992)

    Article  Google Scholar 

  12. Crawford, R.P., Cann, C.E., Keaveny, T.M.: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4), 744–750 (2003)

    Article  Google Scholar 

  13. Cuddihy, M.T., Gabriel, S.E., Crowson, C.S., O’Fallon, W.M., Melton 3rd, L.J.: Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporos. Int. 9(6), 469–475 (1999)

    Google Scholar 

  14. Cummings, S.R., Marcus, R., Palermo, L., Ensrud, K.E., Genant, H.K.: Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. Study of Osteoporotic Fractures Research Group. J. Bone Miner. Res. 9(9):1429-1432 (1994)

    Google Scholar 

  15. Delmas, P.D., Genant, H.K., Crans, G.G., Stock, J.L., Wong, M., Siris, E., Adachi, J.D.: Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33(4), 522–532 (2003)

    Article  Google Scholar 

  16. Delmas, P.D., van de Langerijt, L., Watts, N.B., Eastell, R., Genant, H., Grauer, A., Cahall, D.L.: Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J. Bone Miner. Res. 20(4), 557–563 (2005)

    Article  Google Scholar 

  17. Duan, Y., Seeman, E., Turner, C.H.: The biomechanical basis of vertebral body fragility in men and women. J. Bone Miner. Res. 16(12), 2276–2283 (2001). doi:10.1359/jbmr.2001.16.12.2276

    Article  Google Scholar 

  18. Duan, Y., Wang, X.F., Evans, A., Seeman, E.: Structural and biomechanical basis of racial and sex differences in vertebral fragility in Chinese and Caucasians. Bone 36(6), 987–998 (2005). doi:10.1016/j.bone.2004.11.016

    Article  Google Scholar 

  19. Duan, Y., Duboeuf, F., Munoz, F., Delmas, P.D., Seeman, E.: The fracture risk index and bone mineral density as predictors of vertebral structural failure. Osteoporos. Int. 17(1), 54–60 (2006). doi:10.1007/s00198-005-1893-5

    Article  Google Scholar 

  20. Eastell, R., Cedel, S.L., Wahner, H.W., Riggs, B.L., Melton 3rd, L.J.: Classification of vertebral fractures. J. Bone Miner. Res. 6(3), 207–215 (1991)

    Article  Google Scholar 

  21. Fields, A.J., Lee, G.L., Keaveny, T.M.: Mechanisms of initial endplate failure in the human vertebral body. J. Biomech. 43(16), 3126–3131 (2010). doi:10.1016/j.jbiomech.2010.08.002

    Article  Google Scholar 

  22. Freitas, S.S., Barrett-Connor, E., Ensrud, K.E., Fink, H.A., Bauer, D.C., Cawthon, P.M., Lambert, L.C., Orwoll, E.S.: Rate and circumstances of clinical vertebral fractures in older men. Osteoporos. Int. 19(5), 615–623 (2008). doi:10.1007/s00198-007-0510-1

    Article  Google Scholar 

  23. Fritz, J.M., Guan, Y., Wang, M., Smith, P.A., Harris, G.F.: A fracture risk assessment model of the femur in children with osteogenesis imperfecta (OI) during gait. Med. Eng. Phys. 31(9), 1043–1048 (2009). doi:10.1016/j.medengphy.2009.06.010

    Article  Google Scholar 

  24. Greenspan, S.L., Myers, E.R., Maitland, L.A., Resnick, N.M., Hayes, W.C.: Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA 271(2), 128–133 (1994)

    Article  Google Scholar 

  25. Hansen, U., Zioupos, P., Simpson, R., Currey, J.D., Hynd, D.: The effect of strain rate on the mechanical properties of human cortical bone. J. Biomech. Eng. 130(1), 011011 (2008). doi:10.1115/1.2838032

    Article  Google Scholar 

  26. Hayes, W.C.: Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In: Mow, V.C., Hayes, W.C. (eds.) Basic Orthopaedic Biomechanics, pp. 93–142. Raven Press, New York (1991)

    Google Scholar 

  27. Hayes, W.C., Myers, E.R., Morris, J.N., Gerhart, T.N., Yett, H.S., Lipsitz, L.A.: Impact near the hip dominates fracture risk in elderly nursing home residents who fall. Calcif. Tissue Int. 52(3), 192–198 (1993)

    Article  Google Scholar 

  28. Hayes, W.C., Myers, E.R., Robinovitch, S.N., Van Den Kroonenberg, A., Courtney, A.C., McMahon, T.A.: Etiology and prevention of age-related hip fractures. Bone 18(1 Suppl), 77S–86S (1996)

    Article  Google Scholar 

  29. Hayes, W.C., Erickson, M.S., Power, E.D.: Forensic injury biomechanics. Annu. Rev. Biomed. Eng. 9, 55–86 (2007). doi:10.1146/annurev.bioeng.9.060906.151946

    Article  Google Scholar 

  30. Heller, M.O., Bergmann, G., Deuretzbacher, G., Durselen, L., Pohl, M., Claes, L., Haas, N.P., Duda, G.N.: Musculo-skeletal loading conditions at the hip during walking and stair climbing. J. Biomech. 34(7), 883–893 (2001)

    Article  Google Scholar 

  31. Ismail, A.A., Cooper, C., Felsenberg, D., Varlow, J., Kanis, J.A., Silman, A.J., O’Neill, T.W.: Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos. Int. 9(3):206–213 (1999)

    Google Scholar 

  32. Kazakia, G.J., Burghardt, A.J., Link, T.M., Majumdar, S.: Variations in morphological and biomechanical indices at the distal radius in subjects with identical BMD. J. Biomech. (2010). doi:10.1016/j.jbiomech.2010.10.010

  33. Keaveny, T.M.: Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann. N. Y. Acad. Sci. 1192, 57–65 (2010). NYAS5348[pii]10.1111/j.1749-6632.2009.05348.x

    Article  Google Scholar 

  34. Keaveny, T.M., Bouxsein, M.L.: Theoretical implications of the biomechanical fracture threshold. J. Bone Miner. Res. 23(10), 1541–1547 (2008). doi:10.1359/jbmr.080406

    Article  Google Scholar 

  35. Keyak, J.H., Rossi, S.A., Jones, K.A., Skinner, H.B.: Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31(2), 125–133 (1998)

    Article  Google Scholar 

  36. Klotzbuecher, C.M., Ross, P.D., Landsman, P.B., Abbott 3rd, T.A., Berger, M.: Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J. Bone Miner. Res. 15(4), 721–739 (2000)

    Article  Google Scholar 

  37. Lochmuller, E.M., Miller, P., Burklein, D., Wehr, U., Rambeck, W., Eckstein, F.: In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporos. Int. 11(4), 361–367 (2000)

    Article  Google Scholar 

  38. Lochmuller, E.M., Groll, O., Kuhn, V., Eckstein, F.: Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30(1), 207–216 (2002)

    Article  Google Scholar 

  39. Lotz, J., Cheal, E., Hayes, W.: Stress distributions within the proximal femur during gait and falls: Implications for osteoporotic fracture. Osteoporos. Int. 5, 252–261 (1995)

    Article  Google Scholar 

  40. Mann, T., Oviatt, S.K., Wilson, D., Nelson, D., Orwoll, E.S.: Vertebral deformity in men. J. Bone Miner. Res. 7(11), 1259–1265 (1992)

    Article  Google Scholar 

  41. Marks, R., Allegrante, J.P., Ronald MacKenzie, C., Lane, J.M.: Hip fractures among the elderly: causes, consequences and control. Ageing Res. Rev. 2(1), 57–93 (2003)

    Article  Google Scholar 

  42. Matsumoto, T., Ohnishi, I., Bessho, M., Imai, K., Ohashi, S., Nakamura, K.: Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Spine 34(14), 1464–1469 (2009). doi:10.1097/BRS.0b013e3181a55636

    Article  Google Scholar 

  43. Melton 3rd, L.J., Kan, S.H., Frye, M.A., Wahner, H.W., O’Fallon, W.M., Riggs, B.L.: Epidemiology of vertebral fractures in women. Am. J. Epidemiol. 129(5), 1000–1011 (1989)

    Google Scholar 

  44. Melton 3rd, L.J., Riggs, B.L., Keaveny, T.M., Achenbach, S.J., Hoffmann, P.F., Camp, J.J., Rouleau, P.A., Bouxsein, M.L., Amin, S., Atkinson, E.J., Robb, R.A., Khosla, S.: Structural determinants of vertebral fracture risk. J. Bone Miner. Res. 22(12), 1885–1892 (2007)

    Article  Google Scholar 

  45. Melton 3rd, L.J., Riggs, B.L., van Lenthe, G.H., Achenbach, S.J., Muller, R., Bouxsein, M.L., Amin, S., Atkinson, E.J., Khosla, S.: Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J. Bone Miner. Res. 22(9), 1442–1448 (2007). doi:10.1359/jbmr.070514

    Article  Google Scholar 

  46. Melton 3rd, L.J., Christen, D., Riggs, B.L., Achenbach, S.J., Muller, R., van Lenthe, G.H., Amin, S., Atkinson, E.J., Khosla, S.: Assessing forearm fracture risk in postmenopausal women. Osteoporos. Int. 21(7), 1161–1169 (2010). doi:10.1007/s00198-009-1047-2

    Article  Google Scholar 

  47. Melton 3rd, L.J., Riggs, B.L., Keaveny, T.M., Achenbach, S.J., Kopperdahl, D., Camp, J.J., Rouleau, P.A., Amin, S., Atkinson, E.J., Robb, R.A., Therneau, T.M., Khosla, S.: Relation of vertebral deformities to bone density, structure, and strength. J. Bone Miner. Res. 25(9), 1922–1930 (2010). doi:10.1002/jbmr.150

    Article  Google Scholar 

  48. Muller, M.E., Webber, C.E., Bouxsein, M.L.: Predicting the failure load of the distal radius. Osteoporos. Int. 14(4), 345–352 (2003). doi:10.1007/s00198-003-1380-9

    Article  Google Scholar 

  49. Myers, E.R., Wilson, S.E.: Biomechanics of osteoporosis and vertebral fracture. Spine 22(24 Suppl), 25S–31S (1997)

    Article  Google Scholar 

  50. Myers, E.R., Robinovitch, S.N., Greenspan, S.L., Hayes, W.C.: Factor of risk is associated with frequency of hip fracture in a case-control study. Trans. Orth. Res. Soc. 19, 526 (1994)

    Google Scholar 

  51. Myers, E., Wilson, S., Greenspan, S.: Vertebral fractures in the elderly occur with falling and bending. J. Bone Miner. Res. 11, S355 (1996)

    Google Scholar 

  52. Nevitt. M.C., Cummings, S.R.: Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. The study of osteoporotic fractures research group. J. Am. Geriatr. Soc. 41(11):1226—1234 (1993)

    Google Scholar 

  53. Nevitt, M.C., Ettinger, B., Black, D.M., Stone, K., Jamal, S.A., Ensrud, K., Segal, M., Genant, H.K., Cummings, S.R.: The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann. Intern. Med. 128(10), 793–800 (1998)

    Google Scholar 

  54. Nielson, C.M., Bouxsein, M.L., Freitas, S.S., Ensrud, K.E., Orwoll, E.S.: Trochanteric soft tissue thickness and hip fracture in older men. J. Clin. Endocrinol. Metab. 94(2), 491–496 (2009). doi:10.1210/jc.2008-1640

    Article  Google Scholar 

  55. Nordsletten, L., Ekeland, A.: Muscle contraction increases the structural capacity of the lower leg: an in vivo study in the rat. J. Orthop. Res. 11(2), 299–304 (1993)

    Article  Google Scholar 

  56. Orwoll, E.S., Marshall, L.M., Nielson, C.M., Cummings, S.R., Lapidus, J., Cauley, J.A., Ensrud, K., Lane, N., Hoffmann, P.R., Kopperdahl, D.L., Keaveny, T.M.: Finite element analysis of the proximal femur and hip fracture risk in older men. J. Bone Miner. Res. 24(3), 475–483 (2009). doi:10.1359/jbmr.081201

    Article  Google Scholar 

  57. OTA: Hip Fracture Outcomes in People Age 50 and Over-Background Paper. vol OTA-BP-H- 120 U.S. Government Printing Office, Washington (1994)

    Google Scholar 

  58. Palvanen, M., Kannus, P., Parkkari, J., Pitkajarvi, T., Pasanen, M., Vuori, I., Jarvinen, M.: The injury mechanisms of osteoporotic upper extremity fractures among older adults: a controlled study of 287 consecutive patients and their 108 controls. Osteoporos. Int. 11(10), 822–831 (2000)

    Article  Google Scholar 

  59. Pinilla, T.P., Boardman, K.C., Bouxsein, M.L., Myers, E.R., Hayes, W.C.: Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif. Tissue Int. 58(4), 231–235 (1996)

    Google Scholar 

  60. Pistoia, W., van Rietbergen, B., Lochmuller, E.M., Lill, C.A., Eckstein, F., Ruegsegger, P.: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6), 842–848 (2002). S8756328202007366[pii]

    Article  Google Scholar 

  61. Reilly, D.T., Burstein, A.H.: The elastic and ultimate properties of compact bone tissue. J. Biomech. 8(6), 393–405 (1975)

    Article  Google Scholar 

  62. Riggs, B.L., Melton 3rd, L.J., Robb, R.A., Camp, J.J., Atkinson, E.J., Peterson, J.M., Rouleau, P.A., McCollough, C.H., Bouxsein, M.L., Khosla, S.: Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J. Bone Miner. Res. 19(12), 1945–1954 (2004). doi:10.1359/JBMR.040916

    Article  Google Scholar 

  63. Riggs, B.L., Melton 3rd, L.J., Robb, R.A., Camp, J.J., Atkinson, E.J., Oberg, A.L., Rouleau, P.A., McCollough, C.H., Khosla, S., Bouxsein, M.L.: Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J. Bone Miner. Res. 21(2), 315–323 (2006). doi:10.1359/JBMR.051022

    Article  Google Scholar 

  64. Roberts, B.J., Thrall, E., Muller, J.A., Bouxsein, M.L.: Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk. Bone 46(3), 742–746 (2010). doi:10.1016/j.bone.2009.10.020

    Article  Google Scholar 

  65. Robinovitch, S.N., Hayes, W.C., McMahon, T.A.: Distribution of contact force during impact to the hip. Ann. Biomed. Eng. 25(3), 499–508 (1997)

    Article  Google Scholar 

  66. Robinovitch, S.N., Hayes, W.C., McMahon, T.A.: Predicting the impact response of a nonlinear single-degree-of-freedom shock-absorbing system from the measured step response. J. Biomech. Eng. 119(3), 221–227 (1997)

    Article  Google Scholar 

  67. Schuit, S.C., van der Klift, M., Weel, A.E., de Laet, C.E., Burger, H., Seeman, E., Hofman, A., Uitterlinden, A.G., van Leeuwen, J.P., Pols, H.A.: Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1), 195–202 (2004). doi:S8756328203003776

    Article  Google Scholar 

  68. Silva, M.J.: Biomechanics of osteoporotic fractures. Injury 38(Suppl 3), S69–S76 (2007). doi:10.1016/j.injury.2007.08.014

    Article  Google Scholar 

  69. Siris, E.S., Chen, Y.T., Abbott, T.A., Barrett-Connor, E., Miller, P.D., Wehren, L.E., Berger, M.L.: Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch. Intern. Med. 164(10), 1108–1112 (2004). doi:10.1001/archinte.164.10.1108

    Article  Google Scholar 

  70. Sornay-Rendu, E., Munoz, F., Garnero, P., Duboeuf, F., Delmas, P.D.: Identification of osteopenic women at high risk of fracture: the OFELY study. J. Bone Miner. Res. 20(10), 1813–1819 (2005). doi:10.1359/JBMR.050609

    Article  Google Scholar 

  71. Stone, K.L., Seeley, D.G., Lui, L.Y., Cauley, J.A., Ensrud, K., Browner, W.S., Nevitt, M.C., Cummings, S.R.: BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J. Bone Miner. Res. 18(11), 1947–1954 (2003). doi:10.1359/jbmr.2003.18.11.1947

    Article  Google Scholar 

  72. Turner, C.H., Wang, T., Burr, D.B.: Shear strength and fatigue properties of human cortical bone determined from pure shear tests. Calcif. Tissue Int. 69(6), 373–378 (2001)

    Article  Google Scholar 

  73. van den Kroonenberg, A.J., Hayes, W.C., McMahon, T.A.: Dynamic models for sideways falls from standing height. J. Biomech. Eng. 117(3), 309–318 (1995)

    Article  Google Scholar 

  74. van den Kroonenberg, A.J., Hayes, W.C., McMahon, T.A.: Hip impact velocities and body configurations for voluntary falls from standing height. J. Biomech. 29(6), 807–811 (1996). doi:0021-9290(95)00134-4

    Article  Google Scholar 

  75. Vilayphiou, N., Boutroy, S., Szulc, P., van Rietbergen, B., Munoz, F., Delmas, P.D., Chapurlat, R.: Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J. Bone Miner. Res. 26(5), 965–973 (2011). doi:10.1002/jbmr.297

    Article  Google Scholar 

  76. Wainwright, S.A., Marshall, L.M., Ensrud, K.E., Cauley, J.A., Black, D.M., Hillier, T.A., Hochberg, M.C., Vogt, M.T., Orwoll, E.S.: Hip fracture in women without osteoporosis. J. Clin. Endocrinol. Metab. 90(5), 2787–2793 (2005). doi:10.1210/jc.2004-1568

    Article  Google Scholar 

  77. Yang, R.S., Liu, T.K., Hang, Y.S., Chieng, P.U., Tsai, K.S.: Factor of risk for hip fracture in normal Chinese men and women in Taiwan. Calcif. Tissue Int. 65(6), 422–426 (1999). doi:CTI-463

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from the National Institutes of Health: R01AR053986 and a postdoctoral fellowship from the Harvard Translational Research in Aging Training Program (T32AG023480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary L. Bouxsein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, D.E., Bouxsein, M.L. (2013). Factor of Risk for Fracture. In: Silva, M. (eds) Skeletal Aging and Osteoporosis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_110

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_110

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18052-1

  • Online ISBN: 978-3-642-18053-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics