Skip to main content

Bone Microdamage and Its Contributions to Fracture

  • Chapter
  • First Online:
Skeletal Aging and Osteoporosis

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 5))

Abstract

Microdamage formation is a major determinant of bone fracture. The nature and type of damage formed, as linear microcracks or diffuse damage, depends on the interaction between applied loading and the extracellular matrix. Human bone naturally experiences multi-axial cyclic loading. Changes in its extracellular matrix can contribute to the overall deterioration of bone’s mechanical integrity with aging and/or disease. This chapter provides a review of literature reports on the detection of microdamage and its limitations; alterations in microdamage with aging and disease; differences in microdamage between gender and bone’s two distinct structural forms (cancellous and cortical); and the role of microdamage in bone’s mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaffler, M.B., Choi, K., Milgrom, C.: Aging and matrix microdamage accumulation in human compact bone. Bone 17, 521–525 (1995)

    Article  Google Scholar 

  2. Burr, D.B., Forwood, M.R., Fyhrie, D.P., Martin, R.B., Schaffler, M.B., Turner, C.H.: Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 12, 6–15 (1997)

    Article  Google Scholar 

  3. Burr, D.B., Martin, R.B., Schaffler, M.B., Radin, E.L.: Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18, 189–200 (1985)

    Article  Google Scholar 

  4. Noble, B.: Bone microdamage and cell apoptosis. Eur. Cells Mater. J. 6, 46–55 (2003)

    Google Scholar 

  5. Waldorff, E.I., Goldstein, S.A., McCreadie, B.R.: Age-dependent microdamage removal following mechanically induced microdamage in trabecular bone in vivo. Bone 40, 425–432 (2007)

    Article  Google Scholar 

  6. Norman, T.L., Wang, Z.: Microdamage of human cortical bone: incidence and morphology in long bones. Bone 20, 375–379 (1997)

    Article  Google Scholar 

  7. Vashishth, D., Tanner, K.E., Bonfield, W.: Contribution, development and morphology of microcracking in cortical bone during crack propagation. J. Biomech. 33, 1169–1174 (2000)

    Article  Google Scholar 

  8. Diab, T., Vashishth, D.: Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone 40, 612–618 (2007)

    Article  Google Scholar 

  9. George, W.T., Vashishth, D.: Damage mechanisms and failure modes of cortical bone under components of physiological loading. J. Orthop. Res. 23, 1047–1053 (2005)

    Article  Google Scholar 

  10. Diab, T., Vashishth, D.: Effects of damage morphology on cortical bone fragility. Bone 37, 96–102 (2005)

    Article  Google Scholar 

  11. Diab, T., Condon, K.W., Burr, D.B., Vashishth, D.: Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38, 427–431 (2006)

    Article  Google Scholar 

  12. Burr, D.B., Stafford, T.: Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin. Orthop. Relat. Res. 260, 305–308 (1990)

    Google Scholar 

  13. Lee, T.: Microdamage in osteoporosis, bone quality and remodelling. J. Anat. 203, 159 (2003)

    Article  Google Scholar 

  14. Boyce, T.M., Fyhrie, D.P., Glotkowski, M.C., Radin, E.L., Schaffer, M.B.: Damage type and strain mode associations in human compact bone bending fatigue. J. Orthop. Res. 16, 322–329 (1998)

    Article  Google Scholar 

  15. Vashishth, D., Koontz, J., Qiu, S.J., Lundin-Cannon, D., Yeni, Y.N., Schaffler, M.B., Fyhrie, D.P.: In vivo diffuse damage in human vertebral trabecular bone. Bone 26, 147–152 (2000)

    Article  Google Scholar 

  16. Frost, H.M.: Presence of microscopic cracks in vivo in bone. Henry Ford Hosp. Med. Bulletin 8, 25–35 (1960)

    Google Scholar 

  17. Wenzel, T.E., Schaffler, M.B., Fyhrie, D.P.: In vivo trabecular microcracks in human vertebral bone. Bone 19, 89–95 (1996)

    Article  Google Scholar 

  18. Mori, S., Harruff, R., Ambrosius, W., Burr, D.B.: Trabecular bone volume and microdamage accumulation in femoral heads of women with and without femoral neck fractures. Bone 21, 521–526 (1997)

    Article  Google Scholar 

  19. Lee, T.C., Mohsin, S., Taylor, D., Parkesh, R., Gunnlaugsson, T., O’Brien, F.J., Giehl, M., Gowin, W.: Detecting microdamage in bone. J. Anat. 203, 161–172 (2003)

    Article  Google Scholar 

  20. Lee, T.C., Arthur, T.L., Gibson, L.J., Hayes, W.C.: Sequential labelling of microdamage in bone using chelating agents. J. Orthop. Res. 18, 322–325 (2000)

    Article  Google Scholar 

  21. Burr, D.B., Hooser, M.: Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone 17, 431–433 (1995)

    Article  Google Scholar 

  22. Frost, H.M., Villanueva, A.R., Roth, H., Stanisavljevic, S.: Tetracycline bone labeling. J. New Drugs 1, 206–216 (1961)

    Google Scholar 

  23. O’Brien, F.J., Taylor, D., Lee, T.C.: Microcrack accumulation at different intervals during fatigue testing of compact bone. J. Biomech. 36, 973–980 (2003)

    Article  Google Scholar 

  24. Kazakia, G.J., Lee, J.J., Singh, M., Bigley, R.F., Martin, R.B., Keaveny, T.M.: Automated high-resolution three-dimensional fluorescence imaging of large biological specimens. J. Microsc. 225, 109–117 (2007)

    Article  MathSciNet  Google Scholar 

  25. Bigley, R.F., Singh, M., Hernandez, C.J., Kazakia, G.J., Martin, R.B., Keaveny, T.M.: Validity of serial milling-based imaging system for microdamage quantification. Bone2 42, 212–215 (2008)

    Article  Google Scholar 

  26. Tang, S.Y., Vashishth, D.: A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone. Bone 40, 1259–1264 (2007)

    Article  Google Scholar 

  27. Tang, S.Y., Vashishth, D.: Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone 46, 148–154 (2010)

    Article  Google Scholar 

  28. Karim, L., Vashishth, D.: Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone. J. Orthop. Res. [Epub ahead of print] (2011)

    Google Scholar 

  29. Schaffler, M.B., Pitchford, W.C., Choi, K., Riddle, J.M.: Examination of compact bone microdamage using back-scattered electron microscopy. Bone 15, 483–488 (1994)

    Article  Google Scholar 

  30. Bentolila, V., Boyce, T.M., Fyhrie, D.P., Drumb, R., Skerry, T.M., Schaffler, M.B.: Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23, 275–281 (1998)

    Article  Google Scholar 

  31. Arlot, M.E., Burt-Pichat, B., Roux, J.P., Vashishth, D., Bouxsein, M.L., Delmas, P.D.: Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J. Bone Miner. Res. 23, 1613–1618 (2008)

    Article  Google Scholar 

  32. Mori, S., Burr, D.B.: Increased intracortical remodeling following fatigue damage. Bone 14, 103–109 (1993)

    Article  Google Scholar 

  33. Hsieh, Y.F., Silva, M.J.: In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density. J. Orthop. Res. 20, 764–771 (2002)

    Article  Google Scholar 

  34. Verborgt, O., Gibson, G.J., Schaffler, M.B.: Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15, 60–67 (2000)

    Article  Google Scholar 

  35. Vashishth, D., Verborgt, O., Divine, G., Schaffler, M.B., Fyhrie, D.P.: Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26, 375–380 (2000)

    Article  Google Scholar 

  36. Nagaraja, S., Lin, A.S., Guldberg, R.E.: Age-related changes in trabecular bone microdamage initiation. Bone 40, 973–980 (2007)

    Article  Google Scholar 

  37. Parfitt, A.M.: Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30, 807–809 (2002)

    Article  Google Scholar 

  38. Fazzalari, N.L., Kuliwaba, J.S., Forwood, M.R.: Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Bone 31, 697–702 (2002)

    Article  Google Scholar 

  39. Chapurlat, R.D., Arlot, M., Burt-Pichat, B., Chavassieux, P., Roux, J.P., Portero-Muzy, N., Delmas, P.D.: Microcrack frequency and bone remodeling in postmenopausal osteoporotic women on long-term bisphosphonates: a bone biopsy study. J. Bone Miner. Res. 22, 1502–1509 (2007)

    Article  Google Scholar 

  40. Kimmel, D.B., Jee, W.S.: A quantitative histologic study of bone turnover in young adult beagles. Anat. Rec. 203, 31–45 (1982)

    Article  Google Scholar 

  41. Han, Z.H., Palnitkar, S., Rao, D.S., Nelson, D., Parfitt, A.M.: Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J. Bone Miner. Res. 12, 498–508 (1997)

    Article  Google Scholar 

  42. Hirano, T., Turner, C.H., Forwood, M.R., Johnston, C.C., Burr, D.B.: Does suppression of bone turnover impair mechanical properties by allowing microdamage accumulation? Bone 27, 13–20 (2000)

    Article  Google Scholar 

  43. Riggs, B.L., Melton, L.J.: Involutional osteoporosis. N. Engl. J. Med. 314, 1676–1686 (1986)

    Article  Google Scholar 

  44. Zioupos, P.: Accumulation of in vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J. Microsc. 201, 270–278 (2001)

    Article  MathSciNet  Google Scholar 

  45. Zioupos, P., Currey, J.D.: Changes in stiffness, strength, and toughness of human cortical bone with age. Bone 22, 57–66 (1998)

    Article  Google Scholar 

  46. Burr, D.B., Turner, C.H., Naick, P., Forwood, M.R., Ambrosius, W., Hasan, M.S., Pidaparti, R.: Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31, 337–345 (1998)

    Article  Google Scholar 

  47. Keaveny, T.M., Wachtel, E.F., Guo, X.E., Hayes, W.C.: Mechanical behavior of damaged trabecular bone. J. Biomech. 27, 1309–1318 (1994)

    Article  Google Scholar 

  48. Yeh, O.C., Keaveny, T.M.: Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J. Orthop. Res. 19, 1001–1007 (2001)

    Article  Google Scholar 

  49. Schaffler, M.B.: Role of bone turnover in microdamage. Osteoporos. Int. 14, S73–S80 (2003)

    Article  Google Scholar 

  50. Macione, J., Kavukcuoglu, N.B., Nesbitt, R.S., Mann, A.B., Guzelsu, N., Kotha, S.P.: Hierarchies of damage induced loss of mechanical properties in calcified bone after in vivo fatigue loading of rat ulnae. J. Mech. Behavior Biomedical Mater. 4, 841–848 (2011)

    Article  Google Scholar 

  51. Schaffler, M.B., Boyce, T.M., Fyhrie, D.P.: Tissue and matrix failure modes in human compact bone during tensile fatigue. Trans. Orthop. Res. Soc. 21, 57 (1996)

    Google Scholar 

  52. Uthgenannt, B.A., Silva, M.J.: Use of the rat forelimb compression model to create discrete levels of bone damage in vivo. J. Biomech. 40, 317–324 (2007)

    Article  Google Scholar 

  53. Norman, T.L., Yeni, Y.N., Brown, C.U., Wang, Z.: Inflence of microdamage on fracture toughness of the human femur and tibia. Bone 23, 303–306 (1998)

    Article  Google Scholar 

  54. Burr, D.: Microdamage and bone strength. Osteoporos. Int. 14, S67–S72 (2003)

    Article  Google Scholar 

  55. Currey, J.D., Brear, K., Zioupos, P.: The effects of ageing and changes in mineral content in degrading the toughness of human femora. J. Biomech. 29, 257 (1996)

    Article  Google Scholar 

  56. Pattin, C., Caler, W., Carter, D.: Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech. 29, 69–79 (1996)

    Article  Google Scholar 

  57. Forwood, M.R., Parker, A.W.: Microdamage in response to repetitive torsional loading in the rat tibia. Calcif. Tissue Int. 45, 47–53 (1989)

    Article  Google Scholar 

  58. Schaffler, M.B., Radin, E.L., Burr, D.B.: Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10, 207–214 (1989)

    Article  Google Scholar 

  59. Yeni, Y.N., Fyhrie, D.P.: Fatigue damage-fracture mechanics interaction in cortical bone. Bone 30, 509–514 (2002)

    Article  Google Scholar 

  60. Martin, R.B., Burr, D.B., Sharkey, N.A.: Skeletal Tissue Mechanics. Springer, New York (2004)

    Google Scholar 

  61. Chapurlat, R.D.: Bone microdamage. Osteoporos. Int. 20, 1033–1035 (2009)

    Article  Google Scholar 

  62. Vashishth, D., Behiri, J.C., Bonfield, W.: Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 30, 763–769 (1997)

    Article  Google Scholar 

  63. Vashishth, D., Tanner, K.E., Bonfield, W.: Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 36, 121–124 (2003)

    Article  Google Scholar 

  64. Vashishth, D.: Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J. Biomech. 37, 943–946 (2004)

    Article  Google Scholar 

  65. Nalla, R.K., Kinney, J.H., Ritchie, R.O.: Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 11, 2 (2003)

    Google Scholar 

  66. Hazenberg, J.G., Taylor, D., Lee, T.C.: Mechanisms of short crack growth at constant stress in bone. Biomaterials 27, 2114–2122 (2006)

    Article  Google Scholar 

  67. Thompson, J.B., Kindt, J.H., Drake, B., Hansma, H.G., Morse, D.E., Hansma, P.K.: Bone indentation recovery time correlates with bone reforming time. Nature 414, 773–776 (2001)

    Article  Google Scholar 

  68. Saito, M., Marumo, K., Fujii, K., Ishioka, N.: Single-column high-performance liquid chromatographic-fluorescence detection of immature, mature, and senescent cross-links of collagen. Anal. Biochem. 253, 26–32 (1997)

    Article  Google Scholar 

  69. Odetti, P., Rossi, S., Monacelli, F., Poggi, A., Cirnigliaro, M., Federici, M., Federici, A.: Advanced glycation end products and bone loss during aging. Ann. NY. Acad. Sci. 1043, 710–717 (2005)

    Article  Google Scholar 

  70. Allen, M.R., Gineyts, E., Leeming, D.J., Burr, D.B., Delmas, P.D.: Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos. Int. 19, 329–337 (2008)

    Article  Google Scholar 

  71. Tang, S.Y., Allen, M.R., Phipps, R., Burr, D.B., Vashishth, D.: Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos. Int. 20, 887–894 (2009)

    Article  Google Scholar 

  72. Paul, R.G., Bailey, A.J.: Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int. J. Biochem. Cell. Biol. 28, 1297–1310 (1996)

    Article  Google Scholar 

  73. Bailey, A.J., Paul, R.G., Knott, L.: Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 106, 1–56 (1998)

    Article  Google Scholar 

  74. Verzijl, N., DeGroot, J., Oldehinkel, E., Bank, R.A., Thorpe, S.R., Baynes, J.W., Bayliss, M.T., Bijlsma, J.W., Lafeber, F.P., Tekoppele, J.M.: Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem. J. 350(Pt 2), 381–387 (2000)

    Article  Google Scholar 

  75. Wang, X., Shen, X., Li, X., Agrawal, C.M.: Age-related changes in the collagen network and toughness of bone. Bone 31, 1–7 (2002)

    Article  Google Scholar 

  76. Vashishth, D.: Age-dependent biomechanical modifications in bone. Crit. Rev. Eukaryot. Gene Expr. 15, 343–358 (2005)

    Article  Google Scholar 

  77. Tang, S.Y., Zeenath, U., Vashishth, D.: Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40, 1144–1151 (2007)

    Article  Google Scholar 

  78. Vashishth, D., Gibson, G.J., Khoury, J.I., Schaffler, M.B., Kimura, J., Fyhrie, D.P.: Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28, 195–201 (2001)

    Article  Google Scholar 

  79. Hernandez, C.J., van Der Ham, F., Tang, S.Y., Baumbach, B.M., Hwu, P.B., Sakkee, A.N., DeGroot, J., Bank, R.A., Keaveny, T.M.: Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37, 825–832 (2005)

    Article  Google Scholar 

  80. Viguet-Carrin, S., Garnero, P., Delmas, P.D.: The role of collagen in bone strength. Osteoporos. Int. 17, 319–336 (2006)

    Article  Google Scholar 

  81. Fazzalari, N.L., Forwood, M.R., Smith, K., Manthey, B.A., Herreen, P.: Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 22, 381–388 (1998)

    Article  Google Scholar 

  82. Ritchie, R.O., Koester, K.J., Ionova, S., Yao, W., Lane, N.E., Ager, J.W.: Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone 43, 798–812 (2008)

    Article  Google Scholar 

  83. Vashishth, D.: Small animal bone biomechanics. Bone 43, 794–797 (2008)

    Article  Google Scholar 

  84. Bonfield, W., Grynpas, M., Young, R.J.: Crack velocity and the fracture of bone. J. Biomech. 11, 473–479 (1978)

    Article  Google Scholar 

Download references

Acknowledgments

NIH grants AR49635, AG20618, and T32GM067545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Vashishth .

Editor information

Editors and Affiliations

Appendix: Measurement of Bone’s Fracture Resistance

Appendix: Measurement of Bone’s Fracture Resistance

As mentioned previously, the fracture properties of bone can be altered drastically due to microdamage accumulation. These fracture properties include measures for strength (resistance to permanent deformation) and toughness (resistance to fracture) [7, 81]. In order to measure these properties, early studies on bone fracture utilized the strength-of-materials approach. The traditional method to measure strength in bone involves mechanical testing on un-notched specimens. This technique results in the initiation and propagation of fracture from random distribution of natural flaws. Evaluation of strength with this method is based on calculation of work-to-fracture (area under load-deformation curve) or the modulus of toughness (area under stress–strain curve). However, fracture resistance depends on the presence of preexisting defects (i.e. microdamage) in addition to the stress or stain applied to bone.

Hence, parallel research introduced a fracture mechanics based approach in which a controlled crack was induced in the specimen before mechanical testing in order to study bone’s fracture characteristics. The induced sharp pre-crack functions as the dominant flaw from which the crack initiates. Using a pre-cracked specimen, toughness at initiation and propagation can be measured. Initiation toughness (critical stress intensity factor [Kc] or strain energy release rate [Gc]) illustrates the inherent toughness of the bone whereas propagation toughness (slope of crack growth resistance curve) illustrates bone’s resistance to the propagation of a crack [82, 83]. For instance, compact tension specimens with an induced chevron notch have been successfully used for investigation of crack propagation and measurement of bone’s fracture resistance [62, 84]. The fracture mechanics approach has been recently been modified for application on small animal bones in order to measure whole bone toughness [82, 83]. Here, pre-cracked rodent long bones (e.g. femur) are mechanically tested via three-point bending. To calculate fracture toughness using this method, three-dimensional images obtained via microcomputed tomography can be utilized to pinpoint the exact location of the notch made in the bone. A cross-sectional image of the notch can then be imported into imaging software (e.g. ImageJ) to measure the inner and outer radii, cortical thickness, and notch angles (initial notch and notch at the instability region). If we assume that the test specimen can be approximated as an edge-cracked cylindrical pipe, these measurements as well as the load obtained during fracture can be incorporated to calculate the fracture toughness using Eq. (1):

$$ k = F_{b} *\frac{{P_{c} *S*R_{o} }}{{\pi (R_{o}^{4} - R_{i}^{4} )}}*\sqrt {\pi *\Uptheta } $$
(1)

where k = fracture toughness, Pc = maximum load (maximum load method) or load at fracture instability (instability method), S = span length, Ro = outer radius of cortical shell, Ri = inner radius of cortical shell, Rm = mean radius of cortical shell, Θ = half-crack angle at crack initiation (maximum load method) or half crack angle at fracture instability (instability method), t = cortical thickness, and Fb = geometrical factor for an edge-cracked cylindrical pipe. The geometrical factor is computed by Eqs. (2) through (8):

$$ F_{b} = \left( {1 + \frac{t}{{2R_{m} }}} \right)\left[ {A_{b} + B_{b} \left( {\frac{\Uptheta }{\pi }} \right) + C_{b} \left( {\frac{\Uptheta }{\pi }} \right)^{2} + D_{b} \left( {\frac{\Uptheta }{\pi }} \right)^{3} + E_{b} \left( {\frac{\Uptheta }{\pi }} \right)^{4} } \right] $$
(2)
$$ A_{b} = 0.65133 - 0.5774\xi - 0.3427\xi^{2} - 0.0681\xi^{3} $$
(3)
$$ B_{b} = 1.879 + 4.795\xi + 2.343\xi^{2} - 0.6197\xi^{3} $$
(4)
$$ C_{b} = - 9.779 - 38.14\xi - 6.611\xi^{2} + 3.972\xi^{3} $$
(5)
$$ D_{b} = 34.56 + 129.9\xi + 50.55\xi^{2} + 3.374\xi^{3} $$
(6)
$$ E_{b} = - 30.82 - 147.69\xi - 78.38\xi^{2} - 15.54\xi^{3} $$
(7)
$$ \xi = \log \left( {\frac{t}{{R_{m} }}} \right) $$
(8)

Comparison between the traditional and contemporary methods [82] shows that the notched technique produces smaller variations in fracture toughness than the un-notched method. Additionally, it was found that crack propagation properties measured from the controlled propagation of a crack due to a pre-crack more comprehensively captures the fracture behavior of bone [62]. As toughness measurements via this fracture mechanics based approach are dependent on applied loading, geometrical parameters, and a pre-machined notch (Fig. 7), this method improves the estimation of bone’s fracture resistance compared to that estimated by traditional methods [82, 83]. (Note that this differs from conventional methods in which the contributions of structural and material components to bone strength are not de-coupled.)

Fig. 7
figure 7

Microcomputed tomography image of a mouse femur showing cortical thickness and endosteal and periosteal radii measured at three cross-sectional regions. Reprinted with permission from Elsevier [83]

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karim, L., Vashishth, D. (2012). Bone Microdamage and Its Contributions to Fracture. In: Silva, M. (eds) Skeletal Aging and Osteoporosis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_107

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_107

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18052-1

  • Online ISBN: 978-3-642-18053-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics