Skip to main content

Soft-Tissue Simulation for Cranio-Maxillofacial Surgery: Clinical Needs and Technical Aspects

  • Chapter
  • First Online:
Patient-Specific Modeling in Tomorrow's Medicine

Abstract

Computerized soft-tissue simulation can provide unprecedented means for predicting facial outlook pre-operatively. Surgeons can virtually perform several surgical plans to have the best surgical results for their patients while considering corresponding soft-tissue outcome. It could be used as an interactive communication tool with their patients as well. There has been comprehensive amount of works for simulating soft-tissue for cranio-maxillofacial surgery. Although some of them have been realized as commercial products, none of them has been fully integrated into clinical practice due to the lack of accuracy and excessive amount of processing time. In this chapter, state-of-the-art and general workflow in facial soft-tissue simulation will be presented, along with an example of patient-specific facial soft-tissue simulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barich, F.: Class II, division 2 (angle) malocclusion: report of a case. Am. J. Orthod. 37(4), 286–293 (1951)

    Article  Google Scholar 

  2. Besl, P., McKay, H.: A method for registration of 3-d shapes. Pattern Anal. Mach. Intell. IEEE Trans. 14(2), 294–299 (1992)

    Google Scholar 

  3. Bianchi, A., Muyldermans, L., Martino, M.D., Lancellotti, L., Amadori, S., Sarti, A., Marchetti, C.: Facial soft tissue esthetic predictions: validation in craniomaxillofacial surgery with cone beam computed tomography data. J. Oral. Maxillofac. Surg. 68(7), 1471–1479 (2010)

    Article  Google Scholar 

  4. Bookstein, F.: Principal warps: thin-plate splines and the decomposition of deformations. Pattern Anal. Mach. Intell. IEEE Trans. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  5. Chabanas, M., Luboz, V., Payan, Y.: Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med. Image. Anal. 7(2), 131–151 (2003)

    Article  Google Scholar 

  6. Chapuis, J., Schramm, A., Pappas, I., Hallermann, W., Schwenzer-Zimmerer, K., Langlotz, F., Caversaccio, M.: A new system for computer-aided preoperative planning and intraoperative navigation during corrective jaw surgery. Inf. Technol. Biomed. IEEE Trans. 11(3), 274–287 (2007)

    Article  Google Scholar 

  7. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16(8), 437–452 (2000)

    Article  MATH  Google Scholar 

  8. Cunningham, M.: Measuring the physical in physical attractiveness: quasi-experiments on the sociobiology of female facial beauty. J. Pers. Soc. Psychol. 50(5), 925–935 (2000)

    Article  Google Scholar 

  9. Cunningham, M., Roberts, A.: "Their ideas of beauty are, on the whole, the same as ours": consistency and variability in the cross-cultural perception of female physical attractiveness. J. Pers. Soc. Psychol. 68(2), 261–279 (1995)

    Google Scholar 

  10. Downs, W.B.: Variations in facial relationships; their significance in treatment and prognosis. Am. J. Orthod. 34(10), 812–840 (1948)

    Article  Google Scholar 

  11. Duck, F.A.: Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press, London (1990)

    Google Scholar 

  12. Dürer A.:Vier Bücher von menschlicher Proportion. Nürnberg (1528)

    Google Scholar 

  13. Ewers, R., Schicho, K., Undt, G., Wanschitz, F., Truppe, M., Seemann, R., Wagner, A.: Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review. Int. J. Oral. Maxillofac. Surg. 34(1), 1–8 (2005)

    Article  Google Scholar 

  14. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  15. Gelder, A.V.: Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools 3(2), 21–42 (1998)

    Google Scholar 

  16. Gladilin, E.: Biomechanical modeling of soft tissue and facial expressions for craniofacial surgery planning. Ph.D. thesis, Free University Berlin (2003)

    Google Scholar 

  17. Hopkin, G.B.: The growth factor in the prognosis of treated cases of angle class 3 malocclusion. Rep. Congr. Eur. Orthod. Soc. 41, 353–363 (1965)

    Google Scholar 

  18. Hume, D.: A treatise of human nature. http://www.books.google.com (2003)

  19. Johnston, V.S., Solomon, C.J., Gibson, S.J., Pallares-Bejarano, A.: Human facial beauty: current theories and methodologies. Arch. Facial. Plast. Surg. 5(5), 371–377 (2003)

    Article  Google Scholar 

  20. Juergens, P., et al.: A computer-assisted diagnostic and treatment concept to increase accuracy and safety in the extracranial correction of cranial vault asymmetries. J. Oral. Maxillofac. Surg. (2011, in press)

    Google Scholar 

  21. Juergens, P., Klug, C., Krol, Z., Beinemann, J., Kim, H., Reyes, M., Guevara-Rojas, G., Zeilhofer, H.F., Ewers, R., Schicho, K.: Navigation-guided harvesting of autologous iliac crest graft for mandibular reconstruction. J. Oral. Maxillofacial. Surg. (2011, in press)

    Google Scholar 

  22. Juergens, P., Ratia, J., Beinemann, J., Krol, Z., Schicho, K., Kunz, C., Zeilhofer, H.F., Zimmerer, S.: Enabling an unimpeded surgical approach to the skull base in patients with cranial hyperostosis, exemplarily demonstrated for craniometaphyseal dysplasia. J. Neurosurg. 115, 528–535 (2011)

    Google Scholar 

  23. Kauer, M., Vuskovic, V., Dual, J., Szekely, G., Bajka, M.: Inverse finite element characterization of soft tissues. Med. Image. Anal. 6(3), 275–287 (2002)

    Article  Google Scholar 

  24. Keeve, E., Girod, S., Kikinis, R., Girod, B.: Deformable modeling of facial tissue for craniofacial surgery simulation. Comput. Aided Surg. 3(5), 228–238 (1998)

    Article  Google Scholar 

  25. Kim, H., Juergens, P., Weber, S., Nolte, L.: A new soft-tissue simulation strategy for craniomaxillofacial surgery using facial muscle template model. Prog. Biophys. Mol. Biol. 103(2–3), 284–291 (2010)

    Article  Google Scholar 

  26. Kim, H., Jürgens, P., Nolte, L., Reyes, M.: Anatomically-driven soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Med. Image Comput. Comput.-Assist. Interv. 6361, 61–68 (2010)

    Google Scholar 

  27. Koch, R.M., Gross, M.H., Carls, F.R., von Büren, D.F., Fankhauser, G., Parish, Y.I.H.: Simulating facial surgery using finite element models. In: Proceedings of ACM SIGGRAPH, pp. 421–428. ACM Press, New York (1996)

    Google Scholar 

  28. Langlois, J., Roggman, L.: What is average and what is not average about attractive faces? Psychol. Sci. 5, 214–220 (1994)

    Article  Google Scholar 

  29. Langlois, J., Roggman, L., Casey, R.: Infant preferences for attractive faces: rudiments of a stereotype? Dev. Psychol. 23(3), 363–369 (1987)

    Google Scholar 

  30. Langlois, J.H., Roggman, L.A.: Attractive faces are only average. Psychol. Sci. 1, 115–121 (2008)

    Article  Google Scholar 

  31. Ledinghen, V.D., Vergniol, J.: Transient elastography (fibroscan). Gastroenterol. Clin. Biol. 32(6 Suppl 1), 58–67 (2008)

    Article  Google Scholar 

  32. Lee, Y., Terzopoulos, D., Waters, K.: Realistic modeling for facial animation. Proceedings of the 22nd annual conference on computer graphics and interactive techniques, pp. 55–62 (1995)

    Google Scholar 

  33. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface construction algorithm. Proceedings of the 14th annual conference on computer graphics and interactive techniques, p. 169 (1987)

    Google Scholar 

  34. Man, B.D., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.: Metal streak artifacts in X-ray computed tomography: a simulation study. Nucl. Sci. IEEE Trans. 46(3), 691–696 (1999)

    Article  Google Scholar 

  35. Marchesseau, S., Heimann, T., Chatelin, S., Willinger, R., Delingette, H.: Fast porous viscohyperelastic soft tissue model for surgery simulation: Application to liver surgery. Prog. Biophys. Mol. Biol. 103(2–3), 185–196 (2010)

    Article  Google Scholar 

  36. Mollemans, W.: Facial modelling for surgery systems. Ph.D. thesis, Katholieke Universiteit Leuven (2007)

    Google Scholar 

  37. Mollemans, W., Schutyser, F., Cleynenbreugel, J.V., Suetens, P.: Tetrahedral mass spring model for fast soft tissue deformation. Simulation and Soft Tissue Modeling 2673, 145–154(2003)

    Google Scholar 

  38. Mollemans, W., Schutyser, F., Nadjmi, N., Maes, F., Suetens, P.: Parameter optimisation of a linear tetrahedral mass tensor model for a maxillofacial soft tissue simulator. Biomed. Simul. 4072, 159–168 (2006)

    Google Scholar 

  39. Mollemans, W., Schutyser, F., Nadjmi, N., Maes, F., Suetens, P.: Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med. Image Anal. 11(3), 282–301 (2007)

    Article  Google Scholar 

  40. Mueller, A.A., Paysan, P., Schumacher, R., Zeilhofer, H.F., Berg-Boerner, B.I., Maurer, J., Vetter, T., Schkommodau, E., Juergens, P., Schwenzer-Zimmerer, K.: Missing facial parts computed by a morphable model and transferred directly to a polyamide laser-sintered prosthesis: an innovation study. Br. J. Oral Maxillofac. Surg. (2011, in press)

    Google Scholar 

  41. Nava, A., Mazza, E., Furrer, M., Villiger, P., Reinhart, W.H.: In vivo mechanical characterization of human liver. Med. Image Anal. 12(2), 203–216 (2008)

    Article  Google Scholar 

  42. Nkenke, E., Zachow, S., Benz, M., Maier, T., Veit, K., Kramer, M., Benz, S., Häusler, G., Neukam, F.W., Lell, M.: Fusion of computed tomography data and optical 3d images of the dentition for streak artefact correction in the simulation of orthognathic surgery. Dentomaxillofac. Radiol. 33(4), 226–232 (2004)

    Article  Google Scholar 

  43. Obwegeser, H.: [the one time forward movement of the maxilla and backward movement of the mandible for the correction of extreme prognathism]. SSO Schweiz Monatsschr Zahnheilkd 80(5), 547–556 (1970)

    Google Scholar 

  44. Paniagua, B., Cevidanes, L., Zhu, H., Styner, M.: Outcome quantification using spharm-pdm toolbox in orthognathic surgery. Int. J. CARS 6(5), 617–626 (2011)

    Google Scholar 

  45. Phillips, V., Smuts, N.: Facial reconstruction: utilization of computerized tomography to measure facial tissue thickness in a mixed racial population. Forensic Sci. Int. 83(1), 51–59 (1996)

    Article  Google Scholar 

  46. Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Model. 65(5), 305–321 (2003)

    Article  MATH  Google Scholar 

  47. Picinbono, G., Lombardo, J.C., Delingette, H., Ayache, N.: Anisotropic elasticity and force extrapolation to improve realism of surgery simulation. Robotics and Automation, 2000. Proceedings ICRA ’00. IEEE International Conference on, vol. 1, pp. 596–602 (2000)

    Google Scholar 

  48. Sarti, A., Gori, R., Lamberti, C.: A physically based model to simulate maxillo-facial surgery from 3d ct images. Future Gener. Comput. Syst. 15(2), 217–222 (1999)

    Article  Google Scholar 

  49. Smith, D., Oliker, A., Carter, C., Kirov, M., McCarthy, J.: A virtual reality atlas of craniofacial anatomy. Plast. Reconstr. Surg. 120(6), 1641 (2007)

    Article  Google Scholar 

  50. Terzopoulos, D., Waters, K.: Physically-based facial modeling, analysis, and animation. J. Vis. Comput. Animat. 1(2), 73–80 (1990)

    Article  Google Scholar 

  51. Teschner, M., Girod, S., Girod, B.: Optimization approaches for soft-tissue prediction in craniofacial surgery simulation. Med. Image Comput. Comput.-Assist. Interv. 1679, 1183–1190 (1999)

    Google Scholar 

  52. Teschner, M., Girod, S., Girod, B.: Direct computation of nonlinear soft-tissue deformation. Proc. Vision, Modeling, Visualization VM’00, pp. 383–390 (2000)

    Google Scholar 

  53. Thornhill, R.G.: Human facial beauty: average, symmetry and parasite resistance. Hum. Nat. 4, 239–269 (1993)

    Article  Google Scholar 

  54. Troulis, M.J., Everett, P., Seldin, E.B., Kikinis, R., Kaban, L.B.: Development of a three-dimensional treatment planning system based on computed tomographic data. Int. J. Oral. Maxillofac. Surg. 31(4), 349–357 (2002)

    Article  Google Scholar 

  55. Uesu, D., Bavoil, L., Fleishman, S., Shepherd, J., Silva, C.: Simplification of unstructured tetrahedral meshes by point sampling. Volume Graphics, 2005. Fourth International Workshop on, pp. 157–238 (2005)

    Google Scholar 

  56. Vannier, M.W., Gado, M.H., Marsh, J.L.: Three-dimensional display of intracranial soft-tissue structures. AJNR Am. J. Neuroradiol. 4(3), 520–521 (1983)

    Google Scholar 

  57. Westermark, A., Zachow, S., Eppley, B.L.: Three-dimensional osteotomy planning in maxillofacial surgery including soft tissue prediction. J. Craniofac. Surg. 16(1), 100–104 (2005)

    Article  Google Scholar 

  58. Xia, J., Ip, H.H., Samman, N., Wong, H.T., Gateno, J., Wang, D., Yeung, R.W., Kot, C.S., Tideman, H.: Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery. IEEE Trans. Inf. Technol. Biomed. 5(2), 97–107 (2001)

    Article  Google Scholar 

  59. Zachow, S., Gladiline, E., Hege, H., Deuflhard, P.: Finite-element simulation of soft tissue deformation. Proc. CARS 2000, pp. 23–28 (2000)

    Google Scholar 

  60. Zachow, S., Hierl, T., Erdmann, B.: A quantitative evaluation of 3d soft tissue prediction in maxillofacial surgery planning. Proc. 3. Jahrestagung der Deutschen Gesellschaft fur Computer-und Roboter-assistierte Chirurgie eV, Munchen (2004)

    Google Scholar 

  61. Zeilhofer, H.F., Kliegis, U., Sader, R., Horch, H.H.: Video matching as intraoperative navigation aid in operations to improve the facial profile. Mund Kiefer Gesichtschir 1(Suppl 1), S68–70 (1997)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Center of Competence in Research "Computer Aided and Image Guided Medical Interventions (Co-Me)", and the AO/ASIF Foundation, Davos, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, H., Jürgens, P., Reyes, M. (2011). Soft-Tissue Simulation for Cranio-Maxillofacial Surgery: Clinical Needs and Technical Aspects. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_105

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_105

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics