Skip to main content

Bio-inspired Resorbable Calcium Phosphate-Polymer Nanocomposites for Bone Healing Devices with Controlled Drug Release

  • Chapter
  • First Online:
Active Implants and Scaffolds for Tissue Regeneration

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 8))

  • 1856 Accesses

Abstract

In orthopedic research, increasing attention is being paid to bioresorbable composite materials as an attractive alternative to permanent metal bone healing devices. Typical composites consist of a biodegradable polyester matrix loaded with bioactive calcium phosphate ceramic particles (tricalcium phosphate, TCP or hydroxyapatite, HA) added to improve the biological response and mechanical properties of the neat polymer. The mechanical behavior of such particle-reinforced composites, however, falls far short of the expected performance in high-load bearing situations. Replicating some features of nacre—a strong and tough natural nanocomposite with a very high content of brittle inorganic phase, can pave the way for a new generation of high-strength resorbable bone implants. This chapter will concentrate on the processing of such “bio-inspired” nanocomposites with high calcium phosphate content where the strong ceramic skeleton is toughened by a small amount of continuously dispersed polymer component. To further improve the mechanical properties, manipulating the adhesion at the interface between the ceramic and polymeric nanoscale components was attempted. An original high pressure consolidation method was employed to fabricate dense bulk nanocomposites without exposing them to high processing temperatures. This allows for incorporation of biomolecules that can then be released from the implanted device to enhance bone regeneration (growth factors) or prevent infection (antibacterial drugs). Finally, it is important to evaluate how polymer addition to calcium phosphate influences cell-material or cell–cell interactions because of potential consequences for bone regeneration and vascularization. Towards this goal, CaP-polymer nanocomposites were assessed in monocultures of endothelial cells and osteoblasts and in co-culture thereof as an example of a more complex test system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashammakhi, N., Veiranto, M., Suokas, E., Tiainen, J., Niemelä, S.M., Törmälä, P.: Innovation in multifunctional bioabsorbable osteoconductive drug-releasing hard tissue fixation devices. J. Mater. Sci. Mater. Med. 17, 1275–1282 (2006)

    Article  Google Scholar 

  2. Ambrose, C.G., Clanton, T.O.: Bioabsorbable implants: review of clinical experience in orthopedic surgery. Ann. Biomed. Eng. 32, 171–177 (2004)

    Article  Google Scholar 

  3. Ambrosio, A.M.A., Sahota, J.S., Khan, Y., Laurencin, C.T.: A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J. Biomed. Mater. Res. B58, 295–301 (2001)

    Article  Google Scholar 

  4. Ang, K.C., Leong, K.F., Chua, C.K., Chandrasekaran, M.: Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J. Biomed. Mater. Res. 80A, 655–660 (2007)

    Article  Google Scholar 

  5. Bernstein, M., Gotman, I., Makarov, C., Phadke, A., Radin, S., Ducheyne, P., Gutmanas, E.Y.: Low temperature fabrication of β-TCP-PCL nanocomposites for bone implants. Adv. Biomater. 12, B341–B347 (2010)

    Google Scholar 

  6. Bohner, M.: Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31, S-D37–S-D47 (2000)

    Article  Google Scholar 

  7. Bow, J.S., Liou, S.C., Chen, S.Y.: Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 25, 3155–3161 (2004)

    Article  Google Scholar 

  8. Cavallaro, U., Liebner, S., Dejana, E.: Endothelial cadherins and tumor angiogenesis. Exp. Cell Res. 312, 659–667 (2006)

    Article  Google Scholar 

  9. Chen, C.W., Riman, R.E., TenHuisen, K.S., Brown, K.: Mechanochemical–hydrothermal synthesis of hydroxyapatite from nonionic surfactant emulsion precursors. J. Cryst. Growth 270, 615–623 (2004)

    Article  Google Scholar 

  10. Choi, D., Marra, K.G., Kumta, P.N.: Chemical synthesis of hydroxyapatite/poly(ε-caprolactone) composites. Mater. Res. Bull. 39, 417–432 (2004)

    Article  Google Scholar 

  11. Choong, C.S., Hutmacher, D.W., Triffitt, J.T.: Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng. 12, 2521–2531 (2006)

    Article  Google Scholar 

  12. Collins, I., Wilson-MacDonald, J., Chami, G., Burgoyne, W., Vineyakam, P., Berendt, T., Fairbank, J.: The diagnosis and management of infection following instrumented spinal fusion. Eur. Spine J. 17, 445–450 (2008)

    Article  Google Scholar 

  13. Dohle, E., Fuchs, S., Kolbe, M., Hofmann, S., Schmidt, H., Kirkpatrick, C.J.: Sonic Hedgehog promotes angiogenesis and osteogenesis in a co-culture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng. A 16, 1235–1237 (2010)

    Article  Google Scholar 

  14. Dong, G.C., Sun, J.S., Yao, C.H., Jiang, J.G., Huang, C.W., Lin, F.H.: A study on grafting and characterization of HMDI-modified calcium hydrogenphosphate. Biomaterials 22, 3179–3189 (2001)

    Article  Google Scholar 

  15. Dorozhkin, S.V.: Calcium orthophosphate-based biocomposites and hybrid biomaterials. J. Mater. Sci. 44, 2343–2387 (2009)

    Article  Google Scholar 

  16. Ducheyne, P., Cuckler, J.M.: Bioactive ceramic prosthetic coatings. Clin. Orthop. Relat. Res. 276, 102–114 (1992)

    Google Scholar 

  17. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., Karsenty, G.: Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997)

    Article  Google Scholar 

  18. Eglin, D., Alini, M.: Degradable polymeric materials for osteosnthesis: tutorial. Eur. Cell Mater. 16, 80–91 (2008)

    Google Scholar 

  19. Elbjeirami, W.M., West, J.L.: Angiogenesis-like activity of endothelial cells cocultured with VEGF-producing smooth muscle cells. Tissue Eng. 12, 381–390 (2006)

    Article  Google Scholar 

  20. Fuchs, S., Hermanns, M.I., Kirkpatrick, C.J.: Retention of a differentiated endothelial phenotype by outgrowth endothelial cells isolated from human peripheral blood and expanded in long-term cultures. Cell Tissue Res. 326, 79–92 (2006)

    Article  Google Scholar 

  21. Fuchs, S., Hofmann, A., Kirkpatrick, C.J.: Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng. 13, 2577–2588 (2007)

    Article  Google Scholar 

  22. Fuchs, S., Ghanaati, S., Orth, C., Barbeck, M., Kolbe, M., Hofmann, A., et al.: Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 30, 526–534 (2009)

    Article  Google Scholar 

  23. Fuchs, S., Jiang, X., Schmidt, H., Dohle, E., Ghanaati, S., Orth, C., et al.: Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30, 1329–1338 (2009)

    Article  Google Scholar 

  24. Fuchs, S., Jiang, X., Gotman, I., Makarov, C., Schmidt, H., Gutmanas, E.Y., Kirkpatrick, C.J.: Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone (CDHA-PCL) nanocomposites on the formation of microvessel-like structures. Acta Biomater. 6, 3169–3177 (2010)

    Article  Google Scholar 

  25. Garvin, K., Feschuk, C.: Polylactide-polyglycolide antibiotic implants. Clin. Orhtop. Relat. Res. 437, 105–110 (2006)

    Google Scholar 

  26. Grellier, M., Bordenave, L., Amedee, J.: Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol. 27, 562–571 (2009)

    Article  Google Scholar 

  27. Guillotin, B., Bourget, C., Remy-Zolgadri, M., Bareille, R., Fernandez, P., Conrad, V., et al.: Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell Physiol. Biochem. 14, 325–332 (2004)

    Article  Google Scholar 

  28. Guillotin, B., Bareille, R., Bourget, C., Bordenave, L., Amedee, J.: Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function. Bone 42, 1080–1091 (2008)

    Article  Google Scholar 

  29. Gulati, R., Jevremovic, D., Peterson, T.E., Chatterjee, S., Shah, V., Vile, R.G., et al.: Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ. Res. 93, 1023–1025 (2003)

    Article  Google Scholar 

  30. Guo, H., Su, J., Wei, J., Kong, H., Liu, C.: Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater. 5, 268–278 (2009)

    Article  Google Scholar 

  31. Gutmanas, E.Y.: Cold sintering under high pressure—mechanisms and application. Powder Metal. Int. 15, 129–132 (1983)

    Google Scholar 

  32. Gutmanas, E.Y.: Cold-sintering—high pressure consolidation. In: Eisen, W.B. et al. (eds.) ASM Handbook, vol. 7, Powder Metal Technologies and Applications, p. 574. ASM International, Materials Park (1998)

    Google Scholar 

  33. Hakimimehr, D., Liu, D.M., Troczynski, T.: In situ preparation of poly(propylene fumarate)-hydroxyapatite composite. Biomaterials 26, 7297–7303 (2005)

    Article  Google Scholar 

  34. Henrich, D., Seebach, C., Kaehling, C., Scherzed, A., Wilhelm, K., Tewksbury, R., Powerski, M., Marzi, I.: Simultaneous cultivation of human endothelial like differentiated precursor cells and human marrow stromal cells on beta-Tricalciumphosphate. Tissue Eng. Part C Methods 15, 551–560 (2009)

    Article  Google Scholar 

  35. Hong, Z., Zhang, P., Liu, A., Chen, L., Chen, X., Jing, H.: Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. J. Biomed. Mater. Res. 81A, 515–522 (2007)

    Article  Google Scholar 

  36. Hur, J., Yoon, C.H., Kim, H.S., Choi, J.H., Kang, H.J., Hwang, K.K., et al.: Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 288–293 (2004)

    Article  Google Scholar 

  37. Ignjatović, N., Uskokovic, D.: Synthesis and application of composite biomaterial hydroxyapatite/polylactide. Appl. Surf. Sci. 238, 314–319 (2004)

    Article  Google Scholar 

  38. Ignjatović, N., Tomic, S., Dakić, M., Miljković, M., Plavšić, M., Uskoković, D.: Synthesis and properties of hydroxyapatite/poly-l-lactide composite biomaterials. Biomaterials 20, 809–816 (1999)

    Article  Google Scholar 

  39. Ignjatović, N., Delijić, K., Vukčević, M., Uskoković, D.: The designing of properties of hydroxyapatite/poly-l-lactide composite biomaterials by hot pressing. Z Metallkd 92, 145–149 (2001)

    Google Scholar 

  40. Ignjatović, N., Suljovrujić, E., Budinski-Simendić, J., Krakovsky, I., Uskoković, D.: Evaluation of hot pressed hydroxyapatite/poly-l-lactide composite biomaterial. J. Biomed. Mater. Res. B Appl. Biomater. 71B, 284–294 (2004)

    Article  Google Scholar 

  41. Ishikawa, K., Ducheyne, P., Radin, S.: Determination of Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J. Mater. Sci. Mater. Med. 4, 165–168 (1993)

    Article  Google Scholar 

  42. Jalota, S., Bhaduri, S.B., Tas, A.C.: In vitro testing of calcium phosphate (HA, TCP and biphasic HA-TCP) whiskers. J. Biomed. Mater. Res. 78A, 481–490 (2006)

    Article  Google Scholar 

  43. Jiang, P.J., Patel, S., Gbureck, U., Caley, R., Grover, L.M.: Comparing the efficacy of three bioceramic matrices for the release of vancomycin hydrochloride. J. Biomed. Mater. Res. 93B, 51–58 (2010)

    Google Scholar 

  44. Kasten, P., Luginbühl, R., van Griensven, M., Barkhausen, T., Krettek, C., Bohner, M., et al.: Comparison of human bone marrow stromal cells seeded on calcium deficient hydroxyapatite, (beta)-tricalcium phosphate and demineralized bone matrix. Biomaterials 24, 2593–2603 (2003)

    Article  Google Scholar 

  45. Kasten, P., Vogel, J., Luginbühl, R., Niemeyer, P., Tonak, M., Lorenz, H., et al.: Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials 26, 5879–5889 (2005)

    Article  Google Scholar 

  46. Katti, K.S., Katti, D.R., Mohanty, B.: Biomimetic lessons learnt from nacre. In: Mukherjee, A. (ed.) Biomimetics Learning from Nature, p. 193. INTECH, Vienna (2010)

    Google Scholar 

  47. Kim, H.J., Kim, U.J., Vunjak-Novakovic, G., Min, B.H., Kaplan, D.L.: Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials 26, 4442–4452 (2005)

    Article  Google Scholar 

  48. Kim, S.S., Park, M.S., Cho, S.W., Kang, S.W., Ahn, K.M., Lee, J.H., Kim, B.S.: Enhanced bone formation by marrow-derived endothelial and osteogenic cell transplantation. J. Biomed. Mater. Res. 92A, 246–253 (2010)

    Article  Google Scholar 

  49. Kirkpatrick, C.J., Fuchs, S., Hermanns, M.I., Peters, K., Unger, R.E.: Cell culture models of higher complexity in tissue engineering and regenerative medicine. Biomaterials 28, 5193–5198 (2007)

    Article  Google Scholar 

  50. Komori, T.: Requisite roles of Runx-2 and Cbfb in skeletal development. J. Bone Miner. Metab. 21, 193–197 (2003)

    Google Scholar 

  51. LeGeros, R.Z., LeGeros, J.P.: Phosphate minerals in human tissues. In: Nriagu, J.O., Moore, P.B. (eds.) Phosphate Minerals, p. 351. Springer, New York (1984)

    Google Scholar 

  52. LeGeros, R.Z., Daculsi, G., Orly, I., Abergas, T., Torres, W.: Solution-mediated transformation of octacalcium phosphate (OCP) to apatite. Scanning Microsc. 3, 129–137 (1989)

    Google Scholar 

  53. Liou, S.C., Chen, S.Y., Liu, D.M.: Phase development and structural characterization of calcium phosphate ceramics-polyacrylic acid nanocomposites at room temperature in water–methanol mixtures. J. Mater. Sci. 15, 1261–1266 (2004)

    Google Scholar 

  54. Liu, Q., de Wijn, J.R., van Blitterswijk, C.A.: A study on the grafting reaction of isocyanates with hydroxyapatite particles. J. Biomed. Mater. Res. 40, 358–364 (1998)

    Article  Google Scholar 

  55. Liu, Q., de Wijn, J.R., de Groot, K., van Blitterswijk, C.A.: Surface modification of nano-apatite by grafting organic polymer. Biomaterials 19, 1067–1072 (1998)

    Article  Google Scholar 

  56. Luz, G.M., Mano, J.F.: Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos. Trans. R. Soc. A 367, 1587–1605 (2009)

    Article  Google Scholar 

  57. Makarov, C., Gotman, I., Jiang, X., Fuchs, S., Kirkpatrick, C.J., Gutmanas, E.Y.: In situ synthesis of calcium phosphate-polycaprolactone nanocomposites with high ceramic volume fractions. J. Mater. Sci. Mater. Med. 21, 1771–1779 (2010)

    Article  Google Scholar 

  58. Makarov, C., Gotman, I., Radin, S., Ducheyne, P., Gutmanas, E.Y.: Vancomycin release from bioresorbable calcium phosphate-polymer composites with high ceramic volume fractions. J. Mater. Sci. 45, 6320–6324 (2010)

    Article  Google Scholar 

  59. Mäkinen, T.J., Veiranto, M., Knuuti, J., Jalava, J.P., Törmälä, P., Aro, H.T.: Efficacy of bioabsorbable antibiotic containing bone screw in the prevention of biomaterial-related infection due to Staphylococcus aureus. Bone 36, 292–299 (2006)

    Article  Google Scholar 

  60. Mayer, G.: Rigid biological systems as models for synthetic composites. Science 310, 1144–1147 (2005)

    Article  Google Scholar 

  61. Meinel, L., Karageorgiou, V., Hofmann, S., Fajardo, R., Snyder, B., Li, C., et al.: Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J. Biomed. Mater. Res. A 71, 25–34 (2004)

    Article  Google Scholar 

  62. Meyers, M.A., Lin, A.Y.M., Chen, P.Y., Muyco, J.: Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. I, 76–85 (2008)

    Article  Google Scholar 

  63. Middleton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21, 2335–2346 (2000)

    Article  Google Scholar 

  64. Mohanty, B., Katti, K., Katti, D.: Experimental investigation of nanomechanics of the mineral–protein interface in nacre. Mech. Res. Commun. 35, 17–23 (2008)

    Article  Google Scholar 

  65. Musumeci, A.W., Frost, R.L., Waclawik, E.R.: A spectroscopic study of the mineral paceite (calcium acetate). Spectrochim. Acta A A67, 649–661 (2007)

    Google Scholar 

  66. Nakase, T., Takaoka, K., Hirakawa, K., Hirota, S., Takemura, T., Onoue, H., et al.: Alterations in the expression of osteonectin, osteopontin and osteocalcin mRNAs during the development of skeletal tissues in vivo. Bone Miner. 26, 109–122 (1994)

    Article  Google Scholar 

  67. Neumann, M., Epple, M.: Composites of calcium phosphate and polymers as bone substitution materials. Eur. J. Trauma 2, 125–131 (2006)

    Article  Google Scholar 

  68. Nikkola, L., Viitanen, P., Ashammakhi, N.: Temporal control of drug release from biodegradable polymer: multicomponent diclofenac sodium releasing PLGA 80/20 rod. J. Biomed. Mater. Res. 89B, 518–526 (2009)

    Article  Google Scholar 

  69. Owen, T.A., Aronow, M., Shalhoub, V., Barone, L.M., Wilming, L., Tassinari, M.S., et al.: Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 143, 420–430 (1990)

    Article  Google Scholar 

  70. Petricca, S.E., Marra, K.G., Kumta, P.N.: Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications. Acta Biomater. 2, 277–286 (2006)

    Article  Google Scholar 

  71. Rakovsky, A., Gotman, I., Gutmanas, E.Y.: Ca-deficient hydroxyapatite/polylactide nanocomposites with chemically modified interfaces by high pressure consolidation at room temperature. J. Mater. Sci. 45, 6339–6344 (2010)

    Article  Google Scholar 

  72. Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.: Biomedical applications of polymer-composite materials: a review. Compos. Sci. Technol. 61, 1189–1224 (2001)

    Article  Google Scholar 

  73. Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006)

    Article  Google Scholar 

  74. Rivron, N.C., Liu, J.J., Rouwkema, J., de Boer, J., van Blitterswijk, C.A.: Engineering vascularised tissues in vitro. Eur. Cell Mater. 15, 27–40 (2008)

    Google Scholar 

  75. Rokkanen, P.U., Bostman, O., Hirvensalo, E., Makela, E.A., Partio, E.K., Patiala, H., Vainionpaa, S.I., Vihtonen, K., Tormala, P.: Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21, 2607–2613 (2000)

    Article  Google Scholar 

  76. Rouwkema, J., de Boer, J., Van Blitterswijk, C.A.: Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12, 2685–2693 (2006)

    Article  Google Scholar 

  77. Santos, M.I., Reis, R.L.: Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol. Biosci. 10, 12–27 (2009)

    Article  Google Scholar 

  78. Santos, M.I., Unger, R.E., Sousa, R.A., Reis, R.L., Kirkpatrick, C.J.: Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials 30, 4407–4415 (2009)

    Article  Google Scholar 

  79. Sato, M., Yasui, N., Nakase, T., Kawahata, H., Sugimoto, M., Hirota, S., et al.: Expression of bone matrix proteins mRNA during distraction osteogenesis. J. Bone Miner. Res. 13, 1221–1231 (1998)

    Article  Google Scholar 

  80. Schmidt, A.H., Swiontkowski, M.F.: Pathophysiology of infections after internal fixation of fractures. J. Am. Acad. Orthop. Surg. 8, 285–291 (2000)

    Google Scholar 

  81. Shikinami, Y., Okuno, M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-l-lactide (PLLA): part I. Basic characteristics. Biomaterials 20, 859–877 (1999)

    Article  Google Scholar 

  82. Siddharthan, A., Seshadri, S.K., Sampath Kumar, T.S.: Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. J. Mater. Sci. Mater. Med. 15, 1279–1284 (2004)

    Article  Google Scholar 

  83. Simon, J.A., Ricci, J.L., Di Cesare, P.E.: Bioresorbable fracture fixation in orthopedics: a comprehensive review. Part I. Basic science and preclinical studies. Am. J. Orthop. 26, 665–671 (1997)

    Google Scholar 

  84. Simon, J.A., Ricci, J.L., Di Cesare, P.E.: Bioresorbable fracture fixation in orthopedics: a comprehensive review. Part II. Clinical studies. Am. J. Orthop. 26, 754–762 (1997)

    Google Scholar 

  85. Takayama, T., Todo, M.: Improvement of mechanical properties of hydroxyapatite particle filled poly(l-lactide) biocomposites using lysine tri-isocyanate. J. Mater. Sci. 44, 5017–5020 (2009)

    Article  Google Scholar 

  86. Tas, A.C., Korkusuz, F., Timicin, M., Akkas, N.: An investigation of the chemical synthesis and high-temperature sintering behavior of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J. Mater. Sci. Mater. Med. 8, 91–96 (1997)

    Article  Google Scholar 

  87. Unger, R.E., Sartoris, A., Peters, K., Motta, A., Migliaresi, C., Kunkel, M., et al.: Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28, 3965–3976 (2007)

    Article  Google Scholar 

  88. Vogt, S., Schnabelrauch, M., Weisser, J., Kautz, A.R., Büchner, H., Kühn, K.D.: Design of an antibiotic delivery system based on a bioresorbable bone substitute. Adv. Eng. Mater. 9, 1135–1140 (2007)

    Article  Google Scholar 

  89. Wagner, H.D.: Paving the way to stronger materials. Nat. Nanotechnol. 2, 742–744 (2007)

    Article  Google Scholar 

  90. Wagoner Johnson, A.J., Herschler, B.A.: A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7(1), 16–30 (2010)

    Article  Google Scholar 

  91. Wildemann, B., Bamdad, P., Holmer, Ch., Haas, N.P., Raschke, M., Schmidmaier, G.: Local delivery of growth factors from coated titanium plates increases osteotomy healing in rats. Bone 34, 862–868 (2004)

    Article  Google Scholar 

  92. Yu, H., VandeVord, P.J., Mao, L., Matthew, H.W., Wooley, P.H., Yang, S.Y.: Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30, 508–517 (2009)

    Article  Google Scholar 

  93. Yu, H., Wooley, P.H., Yang, S.Y.: Biocompatibility of poly-epsilon-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J. Orthop. Surg. Res. 4, 5 (2009)

    Article  Google Scholar 

  94. Yu, H.S., Jang, J.H., Kim, T.I., Lee, H.H., Kim, H.W.: Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J. Biomed. Mater. Res. 88A, 747–754 (2009)

    Article  Google Scholar 

  95. Yubao, L., Klein, C.P.A.T., De Wijn, J., Van De Meer, S., de Groot, K.: Shape change and phase transition of needle-like non-stoichiometric apatite crystals. J. Mater. Sci. Mater. Med. 5, 263–268 (1994)

    Article  Google Scholar 

  96. Zhang, S.M., Liu, J., Zhou, W., Cheng, L., Guo, X.D.: Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr. Appl. Phys. 5, 516–518 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Gotman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gotman, I., Fuchs, S. (2011). Bio-inspired Resorbable Calcium Phosphate-Polymer Nanocomposites for Bone Healing Devices with Controlled Drug Release. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_63

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_63

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics