Skip to main content

Polymer Scaffolds for Bone Tissue Regeneration

  • Chapter
  • First Online:
Active Implants and Scaffolds for Tissue Regeneration

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 8))

Abstract

The term “tissue engineering” refers to methods and techniques used to improve the regeneration of human cells and tissues, including the manipulation of natural and synthetic materials which provide both the structural integrity and the biochemical information to young cells when they are growing into a specific kind of tissue. This chapter deals with the application of tissue engineering to bone tissue regeneration and is focused to the polymer structures studied and used as temporary templates to promote bone reconstruction. After a brief introduction about the general principle of regenerative medicine, the scaffold design criteria and their applications, attention will be focused to scaffold for bones. A scaffold classification is reported based on the type of constituent polymers and a detailed discussion is provided about these materials highlighting advantages and drawbacks for each of them. Moreover, polymer scaffold preparation and characterization techniques are described and discussed with some examples. Finally clinical aspects and criticisms are also presented to show the state of art of the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amidi, M., Romeijn, S.G., Verhoef, J.C., Junginger, H.E., Bungener, L., Huckriede, A., Crommelin, D.J.A., Jiskoot, W.: N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties, immunogenicity in a mouse model. Vaccine 25, 144–155 (2007)

    Article  Google Scholar 

  2. Asti, A., Visai, L., Dorati, R., Conti, B., Saino, E., Sbarra, S., Gastaldi, G., Benazzo, F.: Improved cell growth by Bio-Oss/PLA scaffolds for use as a bone substitute. Technol. Health Care 16, 401–413 (2008)

    Google Scholar 

  3. Asti, A., Gastaldi, G., Dorati, R., Saino, E., Conti B., Visai, L., Benazzo, F.: Human adipose-derived stem cells (hASCs) grown on PLGA, PLGA/HAP and titanium scaffolds for surgical applications. Bioinorg. Chem. Appl. Article ID 831031,12 (2010)

    Google Scholar 

  4. Badylak, S.F.: Modification of natural polymers: collagen. In: Atala, A., Lanza, R. P. (eds.) Methods of Tissue Engineering. pp. 505–514. Academic Press, San Diego (2002)

    Chapter  Google Scholar 

  5. Bartolo, P.J.S., Almeida, H., Laoui, T.: Rapid prototyping and manufacturing for tissue engineering scaffolds. Int. J. Comput. Appl. Technol. 36(1), 1–9 (2009)

    Article  Google Scholar 

  6. Benedetti, L., Cortivo, R., Berti, T., Berti, A., Pea, F., Mazzo, M., Moras, M., Abatangelo, G.: Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials 14, 1154–1160 (1994)

    Article  Google Scholar 

  7. Cai, X., Tong, H., Shen, X., Chen, W., Yan, J., Hu, J.: Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater. 5(7), 2693–2703 (2009)

    Article  Google Scholar 

  8. Campoccia, D., Hunt, J.A., Doherty, P.J., Zhong, S.P., O’Regan, M., Benedetti, L.: Quantitative assessment of the tissue response to films of hyaluronan derivatives. Biomaterials 17, 963–975 (1996)

    Article  Google Scholar 

  9. Cao, H., Kuboyama, N.: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46, 386–395 (2010)

    Article  Google Scholar 

  10. Chang, Y., Bender, J.D., Phelps, M.V.B., Allcock, H.R.: Synthesis and self-association behavior of biodegradable amphiphilic poly[bis(ethyl glycinat-N-y)phosphazene]-PEO block copolymers. Biomacromolecules 3, 1364–1369 (2002)

    Article  Google Scholar 

  11. Chesnutt, B.M., Yuan, Y., Buddington, K., Haggard, W.O., Bumgardner, J.D.: Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng. Part A 15(9), 2571–2579 (2009)

    Article  Google Scholar 

  12. Chua, C.K., Feng, C., Lee, C.W., Ang, G.Q.: Rapid investment casting: direct and indirect approaches via model maker II. Int. J. Adv. Manuf. Technol. 25(1), 26–32 (2005)

    Article  Google Scholar 

  13. Colonna, C., Conti, B., Perugini, P., Pavanetto, F., Modena, T., Dorati, R., Iadarola, P., Genta, I.: Ex vivo evaluation of prolidase loaded chitosan nanoparticles for the enzyme replacement therapy. Eur. J. Pharm. Biopharm. 70, 58–65 (2008)

    Article  Google Scholar 

  14. Day, R.M., Boccaccini, A.R., Shurey, S., Roether, J.A., Forbes, A., Hench, L.L.: Assessment of polyglycolic acid mesh and bioactive glass for soft tissue engineering scaffolds. Biomaterials 25, 5857–5866 (2004)

    Article  Google Scholar 

  15. Dorati, R., Colonna, C., Genta, I., Modena, T., Conti, B.: Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds. Polym. Degrad. Stab. 94, 694–701 (2010)

    Article  Google Scholar 

  16. Ghosh, S., Viana, J.C., Reis, R.L., Mano, J.F.: The double porogen approach as a new technique for the fabrication of interconnected poly(l-lactic acid) and starch based biodegradable scaffolds. J. Mater. Sci. Mater. Med. 18, 185–193 (2007)

    Article  Google Scholar 

  17. Gianolio, D.A., Philbrook, M., Avila, L.Z., Young, L.E., Plate, L., Santos, M.R., Bernasconi, R., Liu, H., Ahn, S., Sun, W., Jarrett, P.K., Miller, R.J.: Hyaluronan-tethered opioid depots: synthetic strategies and release kinetics in vitro and in vivo. Bioconjugate Chem. 19(9), 1767–1774 (2008)

    Article  Google Scholar 

  18. Ginty, P.J., Barry, J.J.A., White, L.J., Howdle, S.M., Shakesheff, K.M.: Controlling protein release from scaffold using polymer blends and composites. Eur. J. Pharm. Biopharm. 68, 82–89 (2008)

    Article  Google Scholar 

  19. Gopferich, A., Tessmar, J.: Polyanhydrides degradation and erosion. Adv. Drug Deliv. Rev. 54, 911 (2002)

    Article  Google Scholar 

  20. Guarino, V., Ambrosio, L.: The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly-epsilon-caprolactone based composite scaffolds. Acta Biomater. 4, 1778–1787 (2008)

    Article  Google Scholar 

  21. Guarino, V., Taddei, D., DiFoggia, M.: The influence of hydroxyapatite particles on in vitro degradation behaviour of poly epsilon caprolactone based composite scaffolds. Tissue Eng. Part A 15, 3655–3668 (2009)

    Article  Google Scholar 

  22. Gupta, D., Tator, C.H., Shoichet, M.S.: Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11), 2370–2379 (2006)

    Article  Google Scholar 

  23. Gupta, D., Venugopal, J., Mitra, S., GiriDev, V.R., Ramakrishna, S.: Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials 30(11), 2085–2094 (2009)

    Article  Google Scholar 

  24. Hadjidakis, D.J., Androulakis, I.I.: Bone remodeling. Ann. N. Y. Acad. Sci. 1092, 385–396 (2006)

    Article  Google Scholar 

  25. Hassenkam, T., Fantner, G.E., Cutroni, J.A., Weaver, J.C., Morse, D.E., Hansma, P.K.: High resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1), 4–10 (2004)

    Article  Google Scholar 

  26. Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991)

    Article  Google Scholar 

  27. Hench, L.L.: Bioceramics. J. Am. Ceram. Soc 81(7), 1705–1728 (1998)

    Article  Google Scholar 

  28. Hoeman, C.D., Sun, J., Legare, A., McKee, M.D., Buschmann, M.D.: Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage 13(4), 318–329 (2005)

    Article  Google Scholar 

  29. Homma, A., Sato, H., Okamachi, A., Emura, T., Ishizawa, T., Kato, T., Matsuura, T., Sato, S., Tamura, T., Higuchi, Y., Watanabe, T., Kitamura, H., Asanuma, K., Yamazaki, T., Ikemi, M., Kitagawa, H., Morikawa, T., Ikeya, H., Maeda, K., Takahashi, K., Nohmi, K., Izutani, N., Huang, M., Khor, E., Lim, L.Y.: Uptake and cytotoxicity of chitosan molecules, nanoparticles: effects of molecular weight, degree odf deacetylation. Pharm. Res. 21(2), 344–353 (2004)

    Article  Google Scholar 

  30. Hou, Q.P., Walsh, M.C., Freeman, J.J.A., Barry, S.M., Howdle, K.M.: Incorporation of protein within fibre-based scaffolds using a post-fabrication entrapment method. J. Pharm. Pharmacol. 58, 895–902 (2006)

    Article  Google Scholar 

  31. Ifkovits, J.L., Burdick, J.A.: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13(10), 2369–2385 (2007)

    Article  Google Scholar 

  32. Jacobs, C.R.: The mechanobiology of cancellous bone structural adaptation. J. Rehabil. Res. Dev. 37, 209–216 (2000)

    MathSciNet  Google Scholar 

  33. Kanda, M., Suzuki, R.: Novel hyaluronic acid-methotrexate conjugates for osteoarthritis treatment. Bioorg. Med. Chem. 17(13), 4647–4656 (2009)

    Article  Google Scholar 

  34. Katayama, Y., Montenegro, R., Freier, T., Midha, R., Belkas, J.S., Shoichet, M.S.: Coil-reinforced hydrogel tubes promote nerve regeneration equivalent to that of nerve autografts. Biomaterials 27(3), 505–518 (2006)

    Article  Google Scholar 

  35. Khan, Y., Yaszemski, M.J., Mikos, A.G., Laurencin, C.T.: Tissue engineering of bone: material and matrix considerations. J. Bone Joint Surg. 90, 36–42 (2008)

    Article  Google Scholar 

  36. Kim, H.D., Valentini, R.F.: Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J. Biomed. Mater. Res. Part A 59(3), 573–584 (2002)

    Article  Google Scholar 

  37. Kim, T.K., Yoon J.J., Lee, D.S., Park, T.G.: Gas foamed open porous biodegradable polymeric microspheres. Biomaterials 27(2), 152–159 (2006)

    Article  Google Scholar 

  38. Kim, I.Y., Seo, S.J., Moon, H.S., Yoo, M.K., Park, I.Y., Kim, B.C., Cho, C.S.: Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26(1), 1–21 (2008)

    Article  Google Scholar 

  39. Kisiday, J.D., Jim, M., DiMicco, M.A., Kurz, B., Grodzinsky, A.J.: Effects of dynamic compressive loading on chondrocyte biosynthesis in self assembling peptide scaffolds. J. Biomech. 37(5), 595–604 (2004)

    Article  Google Scholar 

  40. Klein, A.W.: Collagen substances. Facial Plast. Surg. Clin. North. Am. 9(2), 205–218 (2001)

    Google Scholar 

  41. Klok, H.-A., Hwang, J.J., Hartgerink, J.D., Stupp, S.I.: Self assembling biomaterials: l-lysine-dendron-substitute cholesterylg(l-lactic acid). Macromolecules 35(16), 6101–6111 (2002)

    Article  Google Scholar 

  42. Krauland, A.H., Alonso, M.J.: Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int. J. Pharm. 340, 134–142 (2007)

    Article  Google Scholar 

  43. Lakshmi, N.S., Laurencin, C.T.: Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv. Biochem. Eng./Biotechnol. 102, 47–90 (2006)

    Article  Google Scholar 

  44. Lakshmi, S., Katti, D.S., Laurencin, C.T.: Biodegradable polyphosphazenes for drug delivery applications. Adv. Drug Deliv. Rev. 25;55(4), 467–482 (2003)

    Article  Google Scholar 

  45. Lakshmi, S., Lee, D., Bender, J.D., Barrett, E.W., Greish, Y.E., Brown, P.W., Allcock, H.R., Laurencin, C.T.: Synthesis, characterization and in vitro osteocompatibility evaluation of novel biodegradable [poly(ethylalanato)(alkyloxybenzoate)phosphazenes]. J. Biomater. Res. 76A, 206–213 (2006)

    Article  Google Scholar 

  46. Li, M., Mondrinos, M.J., Chen, X., Gandhi, M.R., Ko, F.K., Lelkes, P.I.: Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J. Biomed. Mater. Res. A 79(4), 963 (2006)

    Google Scholar 

  47. Li, J., Du, Y., Liang, H.: Influence of molecular parameters on the degradation of chitosan by a commercial enzyme. Polym. Degrad. Stab. 92(3), 515–524 (2007)

    Article  Google Scholar 

  48. Lim, Y.M., Gwon, H.J., Shin, J., Jeun, J.P., Nho, Y.C.: Preparation of porous poly (ε-caprolactone) scaffolds by gas foaming process and in vitro/in vivo degradation behavior using γ-ray irradiation. J. Ind. Eng. Chem. 14(4), 436–441 (2008)

    Google Scholar 

  49. Lu, H.H., Tang, A., Oh, S.C., Spalazzi, J.P., Dionisio, K.: Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactivecomposites. Biomaterials 26, 2281–2288 (2005)

    Article  Google Scholar 

  50. Ma, P.X.: Biomimetic materials for tissue engineering. Adv. Drug Del. Rev. 60, 184–198 (2008)

    Article  Google Scholar 

  51. Mackie, E.J.: Osteoblasts: novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol. 35, 1301–1305 (2003)

    Article  Google Scholar 

  52. Mäenpää, K., Ellä, V., Mauno, J., Kellomäki, M., Suuronen, R., Ylikomi, T., Miettinen, S.: Use of adipose stem cells and polylactide discs for tissue engineering of the temporomandibular joint disc. J. R. Soc. Interface (2009). doi:10.1098/rsif.2009.0117

  53. Mason, C., Dunnill, P.: A brief definition of regenerative medicine. Regen. Med. 3(1), 1–5 (2008)

    Article  Google Scholar 

  54. Matsuno, T., Hashimoto, Y., Adachi, S., Omata, K., Yoshitaka, Y., Ozeki, Y., Umezu, Y., Tabata, Y., Nakamura, M., Satoh, T.: Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J27 (6), 827–834 (2008).

    Article  Google Scholar 

  55. Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R.R.: Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotech. 21(4), 157–161 (2003)

    Article  Google Scholar 

  56. Nie, H., Wang, C.-H.: Fabrication and characterization of PLGA/HAP composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release. 120(1–2), 111–121 (2007)

    Google Scholar 

  57. Patterson, J., Siew, R., Herring, S.W., Lin, A.S.P., Guldberg, R., Stayton, P.S.: Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31(26), 6772–6781 (2010)

    Article  Google Scholar 

  58. Place, E.S., George, J.H., Williams, C.K., Stevens, M.M.: Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 38, 1139–1151 (2009)

    Article  Google Scholar 

  59. Porpiglia, F., Renard, J., Billia, M., Morra, I., Terone, C., Scarpa, R.M.: Biological glues and collagen fleece for hemostasis during laparoscopic partial nephrectomy: technique and results of perspective study. J. Endourol. 21(4), 423–428 (2007)

    Article  Google Scholar 

  60. Porter, J.R., Ruckh, T.T., Popat, K.C.: Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 25, 1539–1560 (2009)

    Google Scholar 

  61. Portero, A., Remunan-Lopez, C., Criado, M.T., Alonso, M.J.: Reacetylated chitosan microspheres for controlled delivery of antimicrobial agents to the gastric mucosa. J. Microencapsul. 19(6), 797–809 (2002)

    Article  Google Scholar 

  62. Reichert, J.C., Heymer, A., Berner, A., Eulert, J., Nöth, U.: Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration. Biomed. Mater. 4(6), 5001 (2009)

    Article  Google Scholar 

  63. Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006)

    Article  Google Scholar 

  64. Safadi, F.F., Xu, J., Smock, S.L., Kanaan, R.A., Selim, A.H., Odgren, P.R., Marks Jr, S.C., Owen, T.A., Popoff, S.N.: Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J. Cell. Physiol. 196, 51–62 (2003)

    Article  Google Scholar 

  65. Salerno, A., Di Maio, E., Iannace, S., Netti, P.A.: Engineering of foamed structures for biomedical application. J. Cell. Plast. 45, 103–117 (2009)

    Article  Google Scholar 

  66. Sayin, B., Somavarapu, S., Li, X.W., Thanou, M., Sesardic, D., Alpar, H.O., Senel, S.: Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int. J.Pharm. 363, 139–148 (2008)

    Article  Google Scholar 

  67. Sell, S.A., Francis, M.P., Garg, K., McClure, M.J., Simpson, D.G., Bowlin, G.L.: Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomed. Mater. 3(4), 450–501 (2008)

    Article  Google Scholar 

  68. Shen, Y.H., Shoichet, M.S., Radisic, M.: Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater. 4(3), 477–489 (2008)

    Article  Google Scholar 

  69. Singh, I., Kumar, V., Ratner, B.D.: Generation of porous microcellular 85/15 poly(dl)-lactide-co-glycolide foams for biomedical applications. Biomaterials 25(3), 2611–2617 (2004)

    Article  Google Scholar 

  70. Smith, I.O., Liu, X.H., Smith, L.A., Ma, P.X.: Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Adav. Rev. 1, 226–236 (2009)

    Google Scholar 

  71. Stella, J.A., D’Amore, A., Wagner, W.R., Sacks, M.S.: On the biomechanical function of scaffolds for scaffolds for engineering load-bearing soft tissues. Acta Biomater. 6(7), 2365–2381 (2010)

    Article  Google Scholar 

  72. Tabata, Y.: Tissue regeneration based on growth factor release. Tissue Eng. 9(S1), 5–15 (2004)

    MathSciNet  Google Scholar 

  73. Tabata, Y.: Biomaterial technology for tissue engineering aplications. J. R. Soc. Interface 6, S311–S324 (2009)

    Article  Google Scholar 

  74. Tessmar, J.K., Gopferich, A.M.: Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Del. Rev. 59, 274–291 (2007)

    Article  Google Scholar 

  75. Thushari, H.M., Herath, U., DiSilvio, L., Evans, J.R.G.: Biological evaluation of solid freeformed, hard tissue scaffold for orthopedic applications. J. Appl. Biomater. Biomech. 8(2), 89–96 (2010)

    Google Scholar 

  76. Tran, N., Webster, T.J.: Nanotechnology for bone materials. WIREs Nanomed. Nanobiotechnol. 1, 336–351 (2009)

    Article  Google Scholar 

  77. Van Tomme, S.R., Hennink, W.E.: Biodegradable dextran hydrogels for protein delivery applications. Expert Res. Med. Dev. 4, 147–164 (2007)

    Article  Google Scholar 

  78. Wan, L.S., Xu, Z.K.: Polymer surfaces structured with random or aligned electrospun nanofibers to promote the adhesion of blood platelets. J. Biomed. Mater. Res. Part A 89(1), 168–175 (2009)

    Google Scholar 

  79. Wang, S., Lu, L., Yaszemski, M.J.: Bone tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules 7(6), 1976–1982 (2006)

    Article  Google Scholar 

  80. Weigel, T., Schinkel, G., Lendlein, A.: Design and preparation of polymeric scaffolds for tissue engineering. Future Drugs 6, 835–851 (2006)

    Google Scholar 

  81. Williams, D.F.: On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008)

    Article  Google Scholar 

  82. Williams, J.M., Adewunmib, A., Scheka, R.M., Flanagan, C.L., Krebsbacha, P.H., Feinberg, S.E., Hollister, S.J., Das, S.: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26, 4817–4827 (2005)

    Article  Google Scholar 

  83. Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., Polak, M.: Gene expression profiling of human osteoblests following treatment with the ionic production of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001)

    Article  Google Scholar 

  84. Yuan, Y., Chesnutt, B.M., Utturkar, G., Haggard, W.O., Yang, Y., Ong, J.L., Bumgardner, J.D.: The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr. Polym. 68(3), 561–567 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bice Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dorati, R., Colonna, C., Genta, I., Conti, B. (2011). Polymer Scaffolds for Bone Tissue Regeneration. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_59

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_59

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics