Skip to main content

Electrospun Drug-Eluting Fibers for Biomedical Applications

  • Chapter
  • First Online:
Book cover Active Implants and Scaffolds for Tissue Regeneration

Abstract

Electrospinning is a simple and versatile method to produce fibers using charged polymer solutions. As drug delivery systems, electrospun fibers are an excellent choice because of easy drug entrapment, high surface area, morphology control and biomimetic characteristics. Various drugs and biomolecules can be easily encapsulated inside or on fiber surface either during electrospinning or through post-processing of the fibers. Multicomponent fibers have attracted special attention because new properties and morphologies can be easily obtained through the combination of different polymers. The factors that affect the drug release such as construct geometry and thickness, diameter and porosity, composition, crystallinity, swelling capacity, drug loading, drug state, drug molecular weight, drug solubility in the release medium, drug–polymer–electrospinning solvent interactions are discussed. Mathematical models of drug release from electrospun fibers are reviewed and strategies to attain zero-order release and control of burst stage are considered. Finally, some results concerning release control in bicomponent fibers composed of poly(\(\varepsilon\)-caprolactone) and Lutrol F127 (poly(oxyethylene-b-oxypropylene-b-oxyethylene) are presented. The properties of the bicomponent fibers were studied in order to determine the effect of electrospinning processing on crystallinity, hydrophilicity and degradation. Acetazolamide and timolol maleate were loaded in the fibers in different concentrations in order to determine the effect of drug solubility in polymer, drug state, drug loading and fiber composition on morphology, drug distribution and release kinetics. Such electrospun drug eluting fibers can be used as basic elements of various implants and scaffolds for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fridrikh, S.V., Yu, J.H., Brenner, M.P., Rutledge, G.C.: Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. doi:10.1103/PhysRevLett.90.144502 (2003)

  2. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp. Sci. Tech. (2003). doi:10.1016/S0266-3538(03)00178-7

  3. Hohman, M.M., Shin, M., Rutledge, G., Brenner, M.P.: Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids. (2001). doi:10.1063/1.1383791

  4. Rutledge, G.C., Fridrikh, S.V.: Formation of fibers by electrospinning. Adv. Drug Deliv. Rev. (2007). doi:10.1016/j.addr.2007.04.020

  5. McClure, M.J., Sell, S.A., Ayres, C.E., Simpson, D.G., Bowlin, G.L.: Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix. Biomed. Mater. (2009). doi:10.1088/1748-6041/4/5/055010

  6. Lopez-Rubio, A., Sanchez, E., Sanz, Y., Lagaron, J.M.: Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromolecules (2009). doi:10.1021/bm900660b

  7. Heller, J.: Drug delivery systems. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science: An Introduction to Materials in Medicine, 1st edn. Academic Press, London (1996)

    Google Scholar 

  8. Cussler, E.L.: Diffusion Mass Transfer in Fluid Systems. Cambridge University Press, New York (1997)

    Google Scholar 

  9. Qi, H., Hu, P., Xu, J., Wang, A.: Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules (2006). doi:10.1021/bm060264z

  10. Liang, D., Luu, Y.K., Kim, K., Hsiao, B.S., Hadjiargyrou, M., Chu B.: In vitro non-viral gene delivery with nanofibrous scaffolds. Nucl Acids Res. (2005). doi:10.1093/nar/gni171

  11. Wang, Y., Wang, B., Qiao, W., Yin T.: A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles. J. Pharm. Sci. (2010). doi:10.1002/jps.22189

  12. Ayodeji, O., Graham, E., Kniss, D., Lannutti, J., Tomasko, D.: Carbon dioxide impregnation of electrospun polycaprolactone fibers. J Sup Fluids. (2007). doi:10.1016/j.supu.2006.09.011

  13. Chronakis, I.S., Milosevic, B., Frenot, A., Ye, L.: Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting. Macromolecules (2006). doi:10.1021/ma052091w

  14. Chronakis, I.S., Jakob, A., Hagstrom, B., Ye, L: Encapsulation and selective recognition of molecularly imprinted theophylline and 17\(\beta\)-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir (2006). doi:10.1021/la0613880

  15. Ma, Z., Kotaki, M., Ramakrishna, S.: Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: a novel affinity membrane. J. Membr. Sci. (2006). doi:10.1016/j.memsci.2005.07.038

  16. Casper, C.L., Yang, W., Farach-Carson, M.C., Rabolt, J.F.: Coating electrospun collagen and gelatin fibers with Perlecan domain I for increased growth factor binding. Biomacromolecules (2007). doi:10.1021/bm061003s

  17. Casper, C.L., Yamaguchi, N., Kiick, K.L., Rabolt, J.F.: Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules (2005). doi:10.1021/bm050007e

  18. Skotak, M., Leonov, A.P., Larsen, G., Noriega, S., Subramanian, A.: Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of l-lactide onto chitosan. Biomacromolecules (2008). doi:10.1021/bm800158c

  19. Sawicka, K.M., Gouma, P.: Electrospun composite nanofibers for functional applications. J. Nanopart. Res. (2006). doi:10.1007/s11051-005-9026-9

  20. Liang, D., Hsiao, B.S., Chu, B.: Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv .Rev. (2007). doi:10.1016/j.addr.2007.04.021

  21. Lee, J.A., Krogman, K.C., Ma, M., Hill, R.M., Hammond, P.T., Rutledge, G.C.: Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv. Mater. (2009). doi:10.1002/adma.200802458

  22. Lee, S.J., Yoo, J.J., Lim, G.J., Atala, A., Stitzel, J.: In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res A. (2007). doi:10.1002/jbm.a.31287

  23. Zeng, J., Aigner, A., Czubayko, F., Kissel, T., Wendorff, J.H., Greiner, A: Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules (2005). doi:10.1021/bm0492576

  24. Bogntizki, M., Frese, T., Steinhart, M., Greiner, A., Wendorff, J.H.: Preparation of fibers With nanoscaled morphologies: electrospinning of polymer blends. Polym. Eng. Sci. (2001). doi:10.1002/pen.10799

  25. Wei, M., Kang, B., Sung, C., Mead, J.: Core–sheath structure in electrospun nanofibers from polymer blends. Macromol. Mater. Eng. (2006). doi:10.1002/mame.200600284

  26. Kalra, V., Kakad, P.A., Mendez, S., Ivannikov, T., Kamperman, M., Joo, Y.L.: Self-assembled structures in electrospun poly(styrene-block-isoprene) fibers. Macromolecules (2006). doi:10.1021/ma052643a

  27. Vaz, C.M., van Tuijl, S., Bouten, C.V.C., Baaijens, F.P.T.: Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. (2005). doi:10.1016/j.actbio.2005.06.006

  28. Pham, Q.P., Sharma, U., Mikos, A.G.: Electrospun poly(E-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules (2006). doi:10.1021/bm060680j

  29. Hong, C.K., Yang, K.S., Oh, S.H., Ahn, J.-H., Cho, B.-H., Nah, C.: Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends. Polym. Int. (2008). doi:10.1002/pi.2481

  30. You, Y., Youk, J.H., Lee, S.W., Min, B.-M., Lee, S.J., Park, W.H.: Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater. Lett. (2006). doi:10.1016/j.matlet.2005.10.007

  31. Sisson, K., Zhang, C., Farach-Carson, M.C., Chase, D.B., Rabolt, J.F.: Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules (2009). doi:10.1021/bm900036s

  32. Lee, S.J., Oh, S.H., Liu, J., Soker, S., Atala, A., Yoo, J.J.: The use of thermal treatments to enhance the mechanical properties of electrospun poly(\(\varepsilon\)-caprolactone) scaffolds. Biomaterials (2008). doi:10.1016/j.biomaterials.2007.11.024

  33. Wang, X., Zhang, K., Zhu, M., Hsiao, B.S.., Chu, B.: Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments. Macromol. Rapid Commun. (2008). doi:10.1002/marc.200700873

  34. Tiwari, S.K., Tzezana, R., Zussman, E., Venkatraman, S.S.: Optimizing partition-controlled drug release from electrospun core–shell bers. Int. J. Pharm. (2010). doi:10.1016/j.ijpharm.2010.03.021

  35. Chew, S.Y., Wen, J., Yim, E.K.F., Leong, K.W.: Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules (2005). doi: 10.1021/bm0501149

  36. Zeng, J., Yang, L., Liang, Q., Zhang, X., Guan, H., Xu, X., Chen, X., Jin, X.: Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Con. Rel. (2005). doi:10.1016/j.jconrel.2005.02.024

  37. Xu, X., Yang, L., Xu, X., Wang, X., Chen, X., Liang, Q., Zeng, J., Jing, X.: Ultrafine medicated fibers electrospun from W/O emulsions. J. Con. Rel. (2005). doi:10.1016/j.jconrel.2005.07.021

  38. Kim, K., Luu, Y.K., Chang, C., Fang, D., Hsiao, B.S., Chu, B., Hadjiargyro, M.: Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Con. Rel. (2004). doi:10.1016/j.jconrel.2004.04.009

  39. Okuda, T., Tominaga, K., Kidoaki, S.: Time-programmed dual release formulation by multilayered drug-loaded nanober meshes. J. Con. Rel. (2009). doi:10.1016/j.jconrel.2009.12.029

  40. Ranganath, S.H., Wang, C.-H.: Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials (2008). doi:10.1016/j.biomaterials.2008.04.002

  41. Cui, W., Li, X., Zhu, X., Yu, G., Zhou, S., Weng, J.: Investigation of drug release and matrix degradation of electrospun poly(D,L-lactide) fibers with paracetanol inoculation. Biomacromolecules (2006). doi:10.1021/bm060057z

  42. Buschle-Diller, G., Cooper, J., Xie, Z., Wu, Y., Waldrup, J., Ren, X.: Release of antibiotics from electrospun bicomponent fibers. Cellulose (2007). doi:10.1007/s10570-007-9183-3

  43. Nie, H., Soh, B.W., Fu, Y.-.C, Wang, C.-H.: Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 Delivery. Biotech. Bioeng. (2007). doi:10.1002/bit.21517

  44. Maretschek, S., Greiner, A., Kissel, T.: Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J. Con. Rel. (2008). doi:10.1016/j.jconrel.2008.01.011

  45. Kenawy, E.-R., Bowlin, G.L., Manseld, K., Layman, J., Simpson, D.G., Sanders, E.H., Wnek, G.E.: Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Con. Rel. (2002). doi:10.1016/S0168-3659(02)00041-X

  46. Xu, X., Chen, X., Xu, X., Lu, T., Wang, X., Yang, L., Jing, X.: BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against glioma C6 cells. J. Con. Rel. (2006). doi:10.1016/j.jconrel.2006.05.031

  47. Xie, Z., Buschle-Diller, G.: Electrospun Poly(D,L-lactide) fibers for drug delivery: the influence of cosolvent and the mechanism of drug release. J. Appl. Polym. Sci. (2009). doi:10.1002/app.31026

  48. Chien Y.W. (1992) Novel Drug Delivery Systems. Marcel Dekker, New York

    Google Scholar 

  49. Luong-Van, E., Grndahl, L., Chua, K.N., Leong, K.W., Nurcombe, V., Cool, S.M.: Controlled release of heparin from poly(\(\varepsilon\)-caprolactone) electrospun fibers. Biomaterials (2006). doi:10.1016/j.biomaterials.2005.10.028

  50. Zamani, M., Morshed, M., Varshosaz, J., Jannesari, M.: Controlled release of metronidazole benzoate from poly(\(\varepsilon\)-caprolactone) electrospun nanobers for periodontal diseases. Eur. J. Pharm. Biopharm. (2010). doi:10.1016/j.ejpb.2010.02.002

  51. Xie, J., Wang, C.-H.: Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm. Res. (2006). doi:10.1007/s11095-006-9036-z

  52. Thakur, R.A., Florek, C.A., Kohn, J., Michniak, B.B.: Electrospun nanobrous polymeric scaffold with targeted drug release proles for potential application as wound dressing. Int. J. Pharm. (2008). doi:10.1016/j.ijpharm.2008.07.033

  53. Yu, D.-G., Shen, X.-X., Branford-White, C., White, K., Zhu, L.-M., Annie Blig S.W.: Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology, (2009). doi:10.1088/0957-4484/20/5/055104

  54. Taepaiboon, P., Rungsardthong, U., Supaphol, P.: Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology (2006). doi:10.1088/0957-4484/17/9/041

  55. Verreck, G., Chun, I., Rosenblatt, J., Peeters, J., Van Dijck, A., Mensch, J., Noppe, M., Brewste, M.E.: Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J. Con. Rel. (2003). doi:10.1016/S0168-3659(03)00342-0

  56. Huang, Z.-M., He, C.-L., Yang, A., Zhang, Y., Han, X.-J., Yin, J., Q.W Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J. Biomed. Mater. Res. (2005). A. doi:10.1002/jbm.a.30564

  57. Natu, M.V., de Sousa, H.C., Gil, M.H.: Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers. Int. J. Pharm. (2010). doi:10.1016/j.ijpharm.2010.06.045

  58. Sikareepaisan, P., Suksamrarn, A., Supaphol, P.: Electrospun gelatin fiber mats containing a herbal—Centella asiatica—extract and release characteristic of asiaticoside. Nanotechnology, (2008). doi:10.1088/0957-4484/19/01/015102

  59. Tzafriri, A.R.: Mathematical modeling of diffusion-mediated release from bulk degrading matrices. J. Con. Rel. (2000). doi:10.1016/S0168-3659(99)00174-1

  60. Kim, T.G., Lee, D.S., Park, T.G.: Controlled protein release from electrospun biodegradable fiber mesh composed of poly(\(\varepsilon\)-caprolactone) and poly(ethylene oxide). Int. J. Pharm. (2007). doi:10.1016/j.ijpharm.2007.01.040

  61. Perale, G., Arosio, P., Moscatelli, D., Barri, V., Mller, M., Maccagnan, S., Masi, M.: A new model of resorbable device degradation and drug release: transient 1-dimension diffusional model. J. Con. Rel. (2009). doi:10.1016/j.jconrel.2009.02.014

  62. Zong, X., Ran, Sh., Kim, K.-S., Fang, D., Hsiao, B.S., Chu B.: Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Biomacromolecules (2003). doi:10.1021/bm025717o

  63. Peppas, N.A., Brannon-Peppas, L.: Water diffusion and sorption in amorphous macromolecular systems and foods. J. Food Eng. (1994). doi:10.1016/0260-8774(94)90030-2

  64. Zeng, J., Xu, X., Chen, X., Liang, Q., Bian, X., Yang, L., Jin, X.: Biodegradable electrospun fibers for drug delivery. J. Con. Rel. (2003). doi:10.1016/S0168-3659(03)00372-9

  65. Qi, M., Li, X., Yang, Y., Zhou, S.: Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol. Eur. J. Pharm. Biopharm. (2008). doi:10.1016/j.ejpb.2008.05.003

  66. Taepaiboon, P., Rungsardthong, U., Supaphol, P.: Vitamin-loaded electrospun cellulose acetate nanober mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm. Biopharm. (2007). doi:10.1016/j.ejpb.2007.03.018

  67. Suwantong, O., Opanasopit, P., Ruktanonchai, U., Supaphol, P.: Electrospun cellulose acetate ber mats containing curcumin and release characteristic of the herbal substance. Polymer (2007). doi:10.1016/j.polymer.2007.11.019

  68. Verreck, G., Chun, I., Peeters, J., Rosenblatt, J., Brewste, M.E.: Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. (2003) doi:10.1023/A:1023450006281

  69. Kenawy, E.-R., Abdel-Hay, F.I., El-Newehy, M.H., Wnek, G.E.: Processing of polymer nanobers through electrospinning as drug delivery systems. Mater. Chem. Phys. (2009). doi:10.1016/j.matchemphys.2008.07.081

  70. Jiang, H., Hu, Y., Li, Y., Zhao, P., Zhu, K., Che, W.: A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J. Con. Rel. (2005). doi:10.1016/j.jconrel.2005.08.006

  71. Tammaro, L., Russo, G., Vittoria, V.: Encapsulation of diclofenac molecules into Poly(\(\varepsilon\)-caprolactone) electrospun fibers for delivery protection. J. Nanomater. (2009). doi:10.1155/2009/238206

  72. Abidian, M.R., Kim, D.-H., Martin, D.C.: Conducting-polymer nanotubes for controlled drug release. Adv. Mater. (2006). doi:10.1002/adma.200501726

  73. Srikar, R., Yarin, A.L., Megaridis, C.M., Bazilevsky, A.V., Kelley, E.: Desorption-limited mechanism of release from polymer nanofibers. Langmuir. (2008). doi:10.1021/la702449k

  74. Panyam, J., Williams, D., Dash, A., Leslie-Pelecky, D., Labhasetwar, V.: Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci. (2004). doi:10.1002/jps.20094

  75. Drug card for timolol (DB00373), DrugBank database. http://www.drugbank.ca/drugs/DB00373. Cited 27 May 2010

  76. Drug card for acetazolamide (DB00819), DrugBank database. http://www.drugbank.ca/drugs/DB00819. Cited 27 May 2010.

  77. Marsac, P.J., Li, T., Taylor L.S.: Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res. (2009). doi:10.1007/s11095-008-9721-1

  78. Miyajima, M., Koshika, A., Okada, J., Ikeda, M., Nishimura, K.: Effect of polymer crystallinity on papaverine release from poly(L-lactic acid) matrix. J. Con. Rel. (1997). doi:10.1016/S0168-3659(97)00081-3

  79. Jeong, J.-C., Lee, J., Cho, K.: Effects of crystalline microstructure on drug release behavior of poly(\(\varepsilon\)-caprolactone) microspheres. J. Con. Rel. (2003). doi:10.1016/S0168-3659(03)00367-5

  80. Cui, W., Li, X., Zhou, S., Weng, J.: Degradation patterns and surface wettability of electrospun brous mats. Polym. Degrad. Stab. (2008). doi:10.1016/j.polymdegradstab.2007.12.002

  81. Kang, M., Jung, R., Kim, H.-S., Jin, H.-J.: Preparation of superhydrophobic polystyrene membranes by electrospinning. Colloids Surf. A Physicochem. Eng. Asp. (2008). doi:10.1016/j.colsurfa.2007.04.122

  82. Natu, M.V., Gil, M.H., de Sousa, H.C.: Supercritical solvent impregnation of poly(\(\varepsilon\)-caprolactone)/poly(oxyethylene-b-oxypropylene-b-oxyethylene) and poly(\(\varepsilon\)-caprolactone)/poly(ethylene-vinyl acetate) blends for controlled release applications. J. Sup. Fluids (2008). doi:10.1016/j.supflu.2008.05.006

  83. Hglund, A., Hakkarainen, M., Albertsson, A.-C.: Degradation profile of poly(\(\varepsilon\)-caprolactone)-the influence of macroscopic and macromolecular biomaterial Design. J. Macromol. Sci. A. doi:10.1080/10601320701424487 (2007)

Download references

Acknowledgments

FCT (Fundação para a Ciência e a Tecnologia) financial support is acknowledged by Mădălina V. Natu (SFRH/BD/30198/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mădălina V. Natu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Natu, M.V., de Sousa, H.C., Gil, M.H. (2011). Electrospun Drug-Eluting Fibers for Biomedical Applications. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_56

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics