Skip to main content

Instructive Biomaterials for Myocardial Regeneration and Repair

  • Chapter
  • First Online:
Active Implants and Scaffolds for Tissue Regeneration

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 8))

  • 1827 Accesses

Abstract

Tissue regeneration following myocardial infarction (MI) represents a major challenge in cardiovascular therapy, as current clinical approaches are limited in their ability to regenerate or replace damaged myocardium. The lack of clinically-relevant cell sources, and the growing importance of paracrine effects of cell therapy, mediated by soluble growth factors and cytokines, favors the use of acellular biomaterials for myocardial tissue engineering. While the efficacy of acellular scaffold-based approaches have already been shown, applying the biomaterial in an injectable form represents a more clinically-appealing strategy, where only minimally invasive interventions are required to deliver the biopolymer solution. However, in order to enhance the passive effects mediated by the injected biomaterial on infarct stabilization and mechanical support, and achieve long-term functional improvement and regeneration of the cardiac muscle, the combination with controlled spatio-temporal delivery of bioactive molecules is required. Biomaterial-based growth factor delivery has already been shown to improve therapeutic outcome after MI. Affinity-binding alginate represents an example of such a system. This strategy has promising potential for myocardial repair and regeneration, as it provides mechanical support conferred by in situ hydrogel formation, and can affect multiple processes of myocardial regeneration by controlled delivery of multiple proteins. In conclusion, as the development of novel polymer schemes and approaches continues, the application of biomaterials that can instruct a favorable tissue reconstruction, facilitate self-repair, tissue salvage and regeneration, represents a platform for future modifications and combinations (for instance, with cell therapy). Hopefully, such efforts will have major clinical consequences on the treatment of MI and improve long-term outcome in heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbate, A., Bussani, R., Amin, M.S., Vetrovec, G.W., Baldi, A.: Acute myocardial infarction and heart failure: role of apoptosis. Int. J. Biochem. Cell Biol. 38(11), 1834–1840 (2006)

    Google Scholar 

  2. Abdel-Latif, A., Bolli, R., Zuba-Surma, E.K., Tleyjeh, I.M., Hornung, C.A., Dawn, B.: Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am. Heart J. 156(2), 216–226 (2008)

    Google Scholar 

  3. Ahuja, P., Sdek, P., MacLellan, W.R.: Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87(2), 521–544 (2007)

    Google Scholar 

  4. Akhyari, P., Kamiya, H., Haverich, A., Karck, M., Lichtenberg, A.: Myocardial tissue engineering: the extracellular matrix. Eur. J. Cardiothorac. Surg. 34(2), 229–241 (2008)

    Google Scholar 

  5. Al-Shamkhani, A., Duncan, R.: Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J. Bioactive Compat. Polym. 10(1), 4–13 (1995)

    Google Scholar 

  6. Beohar, N., Rapp, J., Pandya, S., Losordo, D.W.: Rebuilding the damaged heart the potential of cytokines and growth factors in the treatment of ischemic heart disease. J. Am. Coll. Cardiol. 56(16), 1287–1297 (2010)

    Google Scholar 

  7. Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., Jovinge, S., Frisen, J.: Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98–102 (2009)

    Google Scholar 

  8. Bersell, K., Arab, S., Haring, B., Kuhn, B.: Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2), 257–270 (2009)

    Google Scholar 

  9. Bock-Marquette, I., Saxena, A., White, M.D., Michael DiMaio, J., Srivastava, D.: Thymosin [beta]4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432(7016), 466–472 (2004)

    Google Scholar 

  10. Boersma, E., Mercado, N., Poldermans, D., Gardien, M., Vos, J., Simoons, M.L.: Acute myocardial infarction. Lancet 361(9360), 847–858 (2003)

    Google Scholar 

  11. Bollini, S., Smart, N., Riley, P.R.: Resident cardiac progenitor cells: at the heart of regeneration. J. Mol. Cell. Cardiol. (2010). doi:10.1016/j.yjmcc.2010.07.006

  12. Bougioukas, I., Didilis, V., Ypsilantis, P., Giatromanolaki, A., Sivridis, E., Lialiaris, T., Mikroulis, D., Simopoulos, C., Bougioukas, G.: Intramyocardial injection of low-dose basic fibroblast growth factor or vascular endothelial growth factor induces angiogenesis in the infarcted rabbit myocardium. Cardiovasc. Pathol. 16(2), 63–68 (2007)

    Google Scholar 

  13. Callegari, A., Bollini, S., Iop, L., Chiavegato, A., Torregrossa, G., Pozzobon, M., Gerosa, G., De Coppi, P., Elvassore, N., Sartore, S.: Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials 28(36), 5449–5461 (2007)

    Google Scholar 

  14. Campa, V.M., Gutierrez-Lanza, R., Cerignoli, F., Diaz-Trelles, R., Nelson, B., Tsuji, T., Barcova, M., Jiang, W., Mercola, M.: Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J. Cell Biol. 183(1), 129–141 (2008)

    Google Scholar 

  15. Carmeliet, P.: Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6(4), 389–395 (2000)

    Google Scholar 

  16. Chavakis, E., Koyanagi, M., Dimmeler, S.: Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation 121(2), 325–335 (2010)

    Google Scholar 

  17. Christman, K.L., Fok, H.H., Sievers, R.E., Fang, Q., Lee, R.J.: Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10(3–4), 403–409 (2004)

    Google Scholar 

  18. Christman, K.L., Lee, R.J.: Biomaterials for the treatment of myocardial infarction. J. Am. Coll. Cardiol. 48(5), 907–913 (2006)

    Google Scholar 

  19. Christman, K.L., Vardanian, A.J., Fang, Q., Sievers, R.E., Fok, H.H., Lee, R.J.: Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol. 44(3), 654–660 (2004)

    Google Scholar 

  20. Conti, E., Carrozza, C., Capoluongo, E., Volpe, M., Crea, F., Zuppi, C., Andreotti, F.: Insulin-like growth factor-1 as a vascular protective factor. Circulation 110, 2260–2265 (2004)

    Google Scholar 

  21. Dai, W., Wold, L.E., Dow, J.S., Kloner, R.A.: Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol. 46(4), 714–719 (2005)

    Google Scholar 

  22. Davani, E.Y., Brumme, Z., Singhera, G.K., Cote, H.C.F., Harrigan, P.R., Dorscheid, D.R.: Insulin-like growth factor-1 protects ischemic murine myocardium from ischemia/reperfusion associated injury. Critical Care 7, 176–183 (2003)

    Google Scholar 

  23. Davis, M.E., Hsieh, P.C., Grodzinsky, A.J., Lee, R.T.: Custom design of the cardiac microenvironment with biomaterials. Circ. Res. 97(1), 8–15 (2005)

    Google Scholar 

  24. Davis, M.E., Hsieh, P.C., Takahashi, T., Song, Q., Zhang, S., Kamm, R.D., Grodzinsky, A.J., Anversa, P., Lee, R.T.: Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. USA 103(21), 8155–8160 (2006)

    Google Scholar 

  25. Dimmeler, S., Burchfield, J., Zeiher, A.M.: Cell-based therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 28(2), 208–216 (2008)

    Google Scholar 

  26. Dobaczewski, M., Gonzalez-Quesada, C., Frangogiannis, N.G.: The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell. Cardiol. 48(3), 504–511 (2010)

    Google Scholar 

  27. Dorn 2nd, G.W.: Periostin and myocardial repair, regeneration, and recovery. N. Engl. J. Med. 357(15), 1552–1554 (2007)

    Google Scholar 

  28. Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., Holbova, R., Feinberg, M.S., Dror, S., Etzion, Y., Leor, J., Cohen, S.: Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl. Acad. Sci. USA 106(35), 14990–14995 (2009)

    Google Scholar 

  29. Eitan, Y., Sarig, U., Dahan, N., Machluf, M.: Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling and biocompatibility. Tissue Eng. C Methods 16(4), 671–683 (2009)

    Google Scholar 

  30. Ferrarini, M., Arsic, N., Recchia, F.A., Zentilin, L., Zacchigna, S., Xu, X., Linke, A., Giacca, M., Hintze, T.H.: Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circ. Res. 98(7), 954–961 (2006)

    Google Scholar 

  31. Frangogiannis, N.G., Smith, C.W., Entman, M.L.: The inflammatory response in myocardial infarction. Cardiovasc. Res. 53(1), 31–47 (2002)

    Google Scholar 

  32. Frantz, S., Bauersachs, J., Ertl, G.: Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc. Res. 81(3), 474–481 (2009)

    Google Scholar 

  33. Freeman, I., Cohen, S.: The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30(11), 2122–2131 (2009)

    Google Scholar 

  34. Freeman, I., Kedem, A., Cohen, S.: The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29(22), 3260–3268 (2008)

    Google Scholar 

  35. Fujimoto, K.L., Tobita, K., Merryman, W.D., Guan, J., Momoi, N., Stolz, D.B., Sacks, M.S., Keller, B.B., Wagner, W.R.: An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol. 49(23), 2292–2300 (2007)

    Google Scholar 

  36. Gaballa, M.A., Sunkomat, J.N., Thai, H., Morkin, E., Ewy, G., Goldman, S.: Grafting an acellular 3-dimensional collagen scaffold onto a non-transmural infarcted myocardium induces neo-angiogenesis and reduces cardiac remodeling. J. Heart Lung Transplant. 25(8), 946–954 (2006)

    Google Scholar 

  37. Garg, S., Narula, J., Chandrashekhar, Y.: Apoptosis and heart failure: clinical relevance and therapeutic target. J. Mol. Cell. Cardiol. 38(1), 73–79 (2005)

    Google Scholar 

  38. Gaudette, G.R., Cohen, I.S.: Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation 114(24), 2575–2577 (2006)

    Google Scholar 

  39. Gnecchi, M., Zhang, Z., Ni, A., Dzau, V.J.: Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103(11), 1204–1219 (2008)

    Google Scholar 

  40. Haider, H., Akbar, S.A., Ashraf, M.: Angiomyogenesis for myocardial repair. Antioxid. Redox Signal. 11(8), 1929–1944 (2009)

    Google Scholar 

  41. Hansson, E.M., Lindsay, M.E., Chien, K.R.: Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 5(4), 364–377 (2009)

    Google Scholar 

  42. Hao, X., Silva, E.A., Mansson-Broberg, A., Grinnemo, K.H., Siddiqui, A.J., Dellgren, G., Wardell, E., Brodin, L.A., Mooney, D.J., Sylven, C.: Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75(1), 178–185 (2007)

    Google Scholar 

  43. Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., Ohtsuka, M., Matsuura, K., Sano, M., Nishi, J., Iwanaga, K., Akazawa, H., Kunieda, T., Zhu, W., Hasegawa, H., Kunisada, K., Nagai, T., Nakaya, H., Yamauchi-Takihara, K., Komuro, I.: G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med. 11(3), 305–311 (2005)

    Google Scholar 

  44. Hassink, R.J., Pasumarthi, K.B., Nakajima, H., Rubart, M., Soonpaa, M.H., de la Riviere, A.B., Doevendans, P.A., Field, L.J.: Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc. Res. 78(1), 18–25 (2008)

    Google Scholar 

  45. Hausenloy, D.J., Yellon, D.M.: Cardioprotective growth factors. Cardiovasc. Res. 83(2), 179–194 (2009)

    Google Scholar 

  46. Hiasa, K., Ishibashi, M., Ohtani, K., Inoue, S., Zhao, Q., Kitamoto, S., Sata, M., Ichiki, T., Takeshita, A., Egashira, K.: Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 109(20), 2454–2461 (2004)

    Google Scholar 

  47. Hsieh, P.C., Davis, M.E., Gannon, J., MacGillivray, C., Lee, R.T.: Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116(1), 237–248 (2006)

    Google Scholar 

  48. Hsieh, P.C., Segers, V.F., Davis, M.E., MacGillivray, C., Gannon, J., Molkentin, J.D., Robbins, J., Lee, R.T.: Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13(8), 970–974 (2007)

    Google Scholar 

  49. Hsieh, P.C.H., Davis, M.E., Gannon, J., MacGillivray, C., Lee, R.T.: Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116, 237–248 (2006)

    Google Scholar 

  50. Hsieh, P.C.H., MacGillivray, C., Gannon, J., Cruz, F.U., Lee, R.T.: Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114, 637–644 (2006)

    Google Scholar 

  51. Hu, X., Dai, S., Wu, W.J., Tan, W., Zhu, X., Mu, J., Guo, Y., Bolli, R., Rokosh, G.: Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation 116(6), 654–663 (2007)

    Google Scholar 

  52. Iwakura, A., Fujita, M., Kataoka, K., Tambara, K., Sakakibara, Y., Komeda, M., Tabata, Y.: Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 18(2), 93–99 (2003)

    Google Scholar 

  53. Jayasankar, V., Woo, Y.J., Bish, L.T., Pirolli, T.J., Chatterjee, S., Berry, MF., Burdick, J., Gardner, T.J., Sweeney, H.L.: Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 108(Suppl 1), II230–II236 (2003)

    Google Scholar 

  54. Jayasankar, V., Woo, Y.J., Pirolli, T.J., Bish, L.T., Berry, M.F., Burdick, J., Gardner, T.J., Sweeney, H.L.: Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemic heart failure. J. Card. Surg. 20, 93–101 (2005)

    Google Scholar 

  55. Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., Belmonte, J.C.: Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288), 606–609 (2010)

    Google Scholar 

  56. Kajstura, J., Urbanek, K., Perl, S., Hosoda, T., Zheng, H., Ogorek, B., Ferreira-Martins, J., Goichberg, P., Rondon-Clavo, C., Sanada, F., D’Amario, D., Rota, M., Del Monte, F., Orlic, D., Tisdale, J., Leri, A., Anversa, P.: Cardiomyogenesis in the adult human heart. Circ. Res. 107(2), 305–315 (2010)

    Google Scholar 

  57. Kobayashi, H., Minatoguchi, S., Yasuda, S., Bao, N., Kawamura, I., Iwasa, M., Yamaki, T., Sumi, S., Misao, Y., Ushikoshi, H., Nishigaki, K., Takemura, G., Fujiwara, T., Tabata, Y., Fujiwara, H.: Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovasc. Res. 79(4), 611–620 (2008)

    Google Scholar 

  58. Kochupura, P.V., Azeloglu, E.U., Kelly, D.J., Doronin, S.V., Badylak, S.F., Krukenkamp, I.B., Cohen, I.S., Gaudette, G.R.: Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation 112(9 Suppl), I144–I149 (2005)

    Google Scholar 

  59. Kondo, I., Ohmori, K., Oshita, A., Takeuchi, H., Fuke, S., Shinomiya, K., Noma, T., Namba, T., Kohno, M.: Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J. Am. Coll. Cardiol. 44(3), 644–653 (2004)

    Google Scholar 

  60. Kuhn, B., del Monte, F., Hajjar, R.J., Chang, Y.S., Lebeche, D., Arab, S., Keating, M.T.: Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med. 13(8), 962–969 (2007)

    Google Scholar 

  61. Laflamme, M.A., Zbinden, S., Epstein, S.E., Murry, C.E.: Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol 2, 307–339 (2007)

    Google Scholar 

  62. Landa, N., Miller, L., Feinberg, M.S., Holbova, R., Shachar, M., Freeman, I., Cohen, S., Leor, J.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11), 1388–1396 (2008)

    Google Scholar 

  63. Leask, A.: TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc. Res. 74(2), 207–212 (2007)

    Google Scholar 

  64. Lee, T.M., Chen, C.C., Chang, N.C.: Granulocyte colony-stimulating factor increases sympathetic reinnervation and the arrhythmogenic response to programmed electrical stimulation after myocardial infarction in rats. Am. J. Physiol. 297(2), H512–H522 (2009)

    Google Scholar 

  65. Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., Petnehazy, O., Landa, N., Feinberg, M.S., Konen, E., Goitein, O., Tsur-Gang, O., Shaul, M., Klapper, L., Cohen, S.: Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J. Am. Coll. Cardiol. 54(11), 1014–1023 (2009)

    Google Scholar 

  66. Li, Q., Li, B., Wang, X., Leri, A., Jana, K.P., Liu, y., Kajstura, J., Baserga, R., Anversa, P.: Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J. Clin. Invest. 100, 1991–1999 (1997)

    Google Scholar 

  67. Li, Q., Li, B., Wang, X., Leri, A., Jana, K.P., Liu, Y., Kajstura, J., Baserga, R., Anversa, P.: Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J. Clin. Invest. 100(8), 1991–1999 (1997)

    Google Scholar 

  68. Liao, S., Porter, D., Scott, A., Newman, G., Doetschman, T., Schultz Jel, J.: The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: the role of JNK signaling. J. Mol. Cell. Cardiol. 42(1), 106–120 (2007)

    Google Scholar 

  69. Linke, A., Muller, P., Nurzynska, D., Casarsa, C., Torella, D., Nasclimbene, A., Castaldo, C., Cascapera, S., Bohm, M., Quaini, F., Urbanek, K., Leri, A., Hintze, T.H., Kajstura, J., Anversa, P.: Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. PNAS 102, 8966–8971 (2005)

    Google Scholar 

  70. Liu, Y., Sun, L., Huan, Y., Zhao, H., Deng, J.: Effects of basic fibroblast growth factor microspheres on angiogenesis in ischemic myocardium and cardiac function: analysis with dobutamine cardiovascular magnetic resonance tagging. Eur. J. Cardiothorac. Surg. 30(1), 103–107 (2006)

    Google Scholar 

  71. Lloyd-Jones, D., Adams, R.J., Brown, T.M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T.B., Ford, E., Furie, K., Gillespie, C., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, P.M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M.M., Meigs, J., Mozaffarian, D., Mussolino, M., Nichol, G., Roger, V.L., Rosamond, W., Sacco, R., Sorlie, P., Thom, T., Wasserthiel-Smoller, S., Wong, N.D., Wylie-Rosett, J.: Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121(7), e46–e215 (2010)

    Google Scholar 

  72. Lu, H., Xu, X., Zhang, M., Cao, R., Brakenhielm, E., Li, C., Lin, H., Yao, G., Sun, H., Qi, L., Tang, M., Dai, H., Zhang, Y., Su, R., Bi, Y., Cao, Y.: Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc. Natl. Acad. Sci. USA 104(29), 12140–12145 (2007)

    Google Scholar 

  73. Masuda, S., Shimizu, T., Yamato, M., Okano, T.: Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev. 60(2), 277–285 (2008)

    Google Scholar 

  74. McMurray, J.J.: Clinical practice. Systolic heart failure. N. Engl. J. Med. 362(3), 228–238 (2010)

    Google Scholar 

  75. Menasche, P.: Cardiac cell therapy: lessons from clinical trials. J. Mol. Cell. Cardiol. (2010) doi:10.1016/j.yjmcc.2010.06.010

  76. Mirotsou, M., Jayawardena, T.M., Schmeckpeper, J., Gnecchi, M., Dzau, V.J.: Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J. Mo.l Cell. Cardiol. (2010). doi:10.1016/j.yjmcc.2010.08.005

  77. Mukherjee, R., Zavadzkas, J.A., Saunders, S.M., McLean, J.E., Jeffords, L.B., Beck, C., Stroud, R.E., Leone, A.M., Koval, C.N., Rivers, W.T., Basu, S., Sheehy, A., Michal, G., Spinale, F.G.: Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Ann. Thorac. Surg. 86(4), 1268–1276 (2008)

    Google Scholar 

  78. Nakajima, H., Sakakibara, Y., Tambara, K., Iwakura, A., Doi, K., Marui, A., Ueyama, K., Ikeda, T., Tabata, Y., Komeda, M.: Therapeutic angiogenesis by the controlled release of basic fibroblast growth factor for ischemic limb and heart injury: toward safety and minimal invasiveness. J. Artif. Organs. 7(2), 58–61 (2004)

    Google Scholar 

  79. Nakamura, T., Matsumoto, K., Mizuno, S., Sawa, Y., Matsuda, H.: Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. Am. J. Physiol. 288(5), H2131–H2139 (2005)

    Google Scholar 

  80. Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., Matsuda, H., Nakamura, T.: Myoardial protection from ischemia/reperfusion injury by endogenous and exogenous. HGF J. Clin. Invest. 106, 1511–1519 (2000)

    Google Scholar 

  81. Nian, M., Lee, P., Khaper, N., Liu, P.: Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 94(12), 1543–1553 (2004)

    Google Scholar 

  82. Novoyatleva, T., Diehl, F., van Amerongen, M.J., Patra, C., Ferrazzi, F., Bellazzi, R., Engel, F.B.: TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc. Res. 85(4), 681–690 (2010)

    Google Scholar 

  83. Ota, T., Gilbert, T.W., Schwartzman, D., McTiernan, C.F., Kitajima, T., Ito, Y., Sawa, Y., Badylak, S.F., Zenati, M.A.: A fusion protein of hepatocyte growth factor enhances reconstruction of myocardium in a cardiac patch derived from porcine urinary bladder matrix. J. Thorac. Cardiovasc. Surg. 136(5), 1309–1317 (2008)

    Google Scholar 

  84. Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., Taylor, D.A.: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2), 213–221 (2008)

    Google Scholar 

  85. Parmacek, M.S., Epstein, J.A.: Cardiomyocyte renewal. N. Engl. J. Med. 361(1), 86–88 (2009)

    Google Scholar 

  86. Parsa, C.J., Matsumoto, A., Kim, J., Riel, R.U., Pascal, L.S., Walton, G.B., Thompson, R.B., Petrofski, J.A., Annex, B.H., Stamler, J.S., Koch, W.J.: A novel protective effect of erythropoietin in the infarcted heart. J. Clin. Invest. 112(7), 999–1007 (2003)

    Google Scholar 

  87. Pasumarthi, K.B., Field, L.J.: Cardiomyocyte cell cycle regulation. Circ. Res. 90(10), 1044–1054 (2002)

    Google Scholar 

  88. Pikkarainen, S., Tokola, H., Kerkela, R., Ruskoaho, H.: GATA transcription factors in the developing and adult heart. Cardiovasc. Res. 63(2), 196–207 (2004)

    Google Scholar 

  89. Ren, J., Samson, W.K., Sowers, J.R.: Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. J. Mol. Cell. Cardiol. 31, 2049–2061 (1999)

    Google Scholar 

  90. Renault, M.A., Losordo, D.W.: Therapeutic myocardial angiogenesis. Microvasc. Res. 74(2–3), 159–171 (2007)

    Google Scholar 

  91. Richardson, T.P., Peters, M.C., Ennett, A.B., Mooney, D.J.: Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19(11), 1029–1034 (2001)

    Google Scholar 

  92. Risau, W.: Mechanisms of angiogenesis. Nature 386(6626), 671–674 (1997)

    Google Scholar 

  93. Robinson, K.A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N.A., Matheny, R.G., Badylak, S.F.: Extracellular matrix scaffold for cardiac repair. Circulation 112(9 Suppl), I135–I143 (2005)

    Google Scholar 

  94. Ruvinov, E., Dvir, T., Leor, J., Cohen, S.: Myocardial repair: from salvage to tissue reconstruction. Expert Rev. Cardiovasc. Ther. 6(5), 669–686 (2008)

    Google Scholar 

  95. Ruvinov, E., Leor, J., Cohen, S.: The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31(16), 4573–4582 (2010)

    Google Scholar 

  96. Ruvinov, E., Leor, J., Cohen, S.: The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32(2), 565–578 (2011)

    Google Scholar 

  97. Rysa, J., Tenhunen, O., Serpi, R., Soini, Y., Nemer, M., Leskinen, H., Ruskoaho, H.: GATA-4 is an angiogenic survival factor of the infarcted heart. Circ. Heart Fail 3(3), 440–450 (2010)

    Google Scholar 

  98. Segers, V.F., Lee, R.T.: Local delivery of proteins and the use of self-assembling peptides. Drug discovery today 12(13–14), 561–568 (2007)

    Google Scholar 

  99. Segers, V.F., Lee, R.T.: Stem-cell therapy for cardiac disease. Nature 451(7181), 937–942 (2008)

    Google Scholar 

  100. Segers, V.F., Tokunou, T., Higgins, L.J., MacGillivray, C., Gannon, J., Lee, R.T.: Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116(15), 1683–1692 (2007)

    Google Scholar 

  101. Shapiro, L., Cohen, S.: Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8), 583–590 (1997)

    Google Scholar 

  102. Shimizu, T., Yamato, M., Kikuchi, A., Okano, T.: Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24(13), 2309–2316 (2003)

    Google Scholar 

  103. Shriver, Z., Liu, D., Sasisekharan, R.: Emerging views of heparan sulfate glycosaminoglycan structure/activity relationships modulating dynamic biological functions. Trends Cardiovasc. Med. 12(2), 71–77 (2002)

    Google Scholar 

  104. Smart, N., Risebro, C.A., Melville, A.A., Moses, K., Schwartz, R.J., Chien, K.R., Riley, P.R.: Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445(7124), 177–182 (2007)

    Google Scholar 

  105. Suleiman, M.S., Singh, R.J., Stewart, C.E.: Apoptosis and the cardiac action of insulin-like growth factor I. Pharmacol. Ther. 114(3), 278–294 (2007)

    Google Scholar 

  106. Tabata, Y., Ikada, Y.: Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20(22), 2169–2175 (1999)

    Google Scholar 

  107. Takano, H., Ueda, K., Hasegawa, H., Komuro, I.: G-CSF therapy for acute myocardial infarction. Trends Pharmacol. Sci. 28(10), 512–517 (2007)

    Google Scholar 

  108. Takehara, N., Tsutsumi, Y., Tateishi, K., Ogata, T., Tanaka, H., Ueyama, T., Takahashi, T., Takamatsu, T., Fukushima, M., Komeda, M., Yamagishi, M., Yaku, H., Tabata, Y., Matsubara, H., Oh, H.: Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J. Am. Coll. Cardiol. 52(23), 1858–1865 (2008)

    Google Scholar 

  109. Tomanek, R.J., Zheng, W., Yue, X.: Growth factor activation in myocardial vascularization: therapeutic implications. Mol. Cell. Biochem. 264(1–2), 3–11 (2004)

    Google Scholar 

  110. Tomita, N., Morishita, R., Taniyama, Y., Koike, H., Aoki, M., Shimizu, H., Matsumoto, K., Nakamura, T., Kaneda, Y., Ogihara, T.: Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation 107(10), 1411–1417 (2003)

    Google Scholar 

  111. Torella, D., Rota, M., Nurzinska, D., Musso, E., Monsen, A., Shiraishi, I., Zias, E., Walsh, K., Rozenzweig, A., Sussman, M.A., Urbanek, K., Nadal-Ginard, B., Kajstura, J., Anversa, P., Leri, A.: Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ. Res. 94, 514–524 (2004)

    Google Scholar 

  112. Tsur-Gang, O., Ruvinov, E., Landa, N., Holbova, R., Feinberg, M.S., Leor, J., Cohen, S.: The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30(2), 189–195 (2009)

    Google Scholar 

  113. Ueda, H., Nakamura, T., Matsumoto, K., Sawa, Y., Matsuda, H., Nakamura, T.: A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats. Cardiovasc. Res. 51, 41–50 (2001)

    Google Scholar 

  114. Urbanek, K., Rota, M., Cascapera, S., Bearzi, C., Nascimbene, A., De Angelis, A., Hosoda, T., Chimenti, S., Baker, M., Limana, F., Nurzynska, D., Torella, D., Rotatori, F., Rastaldo, R., Musso, E., Quaini, F., Leri, A., Kajstura, J., Anversa, P.: Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ. Res. 97(7), 663–673 (2005)

    Google Scholar 

  115. van der Meer, P., Lipsic, E., Henning, R.H., Boddeus, K., van der Velden, J., Voors, A.A., van Veldhuisen, D.J., van Gilst, W.H., Schoemaker, R.G.: Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J. Am. Coll. Cardiol. 46(1), 125–133 (2005)

    Google Scholar 

  116. Vandervelde, S., van Luyn, M.J., Tio, R.A., Harmsen, M.C.: Signaling factors in stem cell-mediated repair of infarcted myocardium. J. Mol. Cell. Cardiol. 39(2), 363–376 (2005)

    Google Scholar 

  117. Vanhoutte, D., Schellings, M., Pinto, Y., Heymans, S.: Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc. Res. 69(3), 604–613 (2006)

    Google Scholar 

  118. Vera Janavel, G., Crottogini, A., Cabeza Meckert, P., Cuniberti, L., Mele, A., Papouchado, M., Fernandez, N., Bercovich, A., Criscuolo, M., Melo, C., Laguens, R.: Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Ther. 13(15), 1133–1142 (2006)

    Google Scholar 

  119. Vesely, I.: Heart valve tissue engineering. Circ. Res. 97(8), 743–755 (2005)

    Google Scholar 

  120. Wainwright, J.M., Czajka, C.A., Patel, U.B., Freytes, D.O., Tobita, K., Gilbert, T.W., Badylak, S.F.: Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. C Methods 16(3), 525–532 (2009)

    Google Scholar 

  121. Wall, S.T., Walker, J.C., Healy, K.E., Ratcliffe, M.B., Guccione, J.M.: Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 114(24), 2627–2635 (2006)

    Google Scholar 

  122. Wang, T., Wu, D.Q., Jiang, X.J., Zhang, X.Z., Li, X.Y., Zhang, J.F., Zheng, Z.B., Zhuo, R., Jiang, H., Huang, C.: Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur. J. Heart Fail. 11(1), 14–19 (2009)

    Google Scholar 

  123. Wang, Y., Ahmad, N., Wani, M.A., Ashraf, M.: Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J. Mol. Cell. Cardiol. 37, 1041–1052 (2004)

    Google Scholar 

  124. Wang, Y., Ahmad, N., Wani, M.A., Ashraf, M.: Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J. Mol. Cell. Cardiol. 37(5), 1041–1052 (2004)

    Google Scholar 

  125. Webster, K.A.: Programmed death as a therapeutic target to reduce myocardial infarction. Trends Pharmacol. Sci. 28(9), 492–499 (2007)

    Google Scholar 

  126. World Health Organization: The atlas of heart disease and stroke. http://wwwwhoint/cardiovascular_diseases/resources/atlas/en/

  127. Yu, J., Christman, K.L., Chin, E., Sievers, R.E., Saeed, M., Lee, R.J.: Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 137(1), 180–187 (2009)

    Google Scholar 

  128. Zhang, G., Nakamura, Y., Wang, X., Hu, Q., Suggs, L.J., Zhang, J.: Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng. 13(8), 2063–2071 (2007)

    Google Scholar 

  129. Zmora, S., Glicklis, R., Cohen, S.: Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23(20), 4087–4094 (2002)

    Google Scholar 

  130. Zohlnhofer, D., Dibra, A., Koppara, T., de Waha, A., Ripa, R.S., Kastrup, J., Valgimigli, M., Schomig, A., Kastrati, A.: Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J. Am. Coll. Cardiol. 51(15), 1429–1437 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Ruvinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruvinov, E., Cohen, S. (2011). Instructive Biomaterials for Myocardial Regeneration and Repair. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_53

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics