Skip to main content

Brain Tissue Mechanical Properties

  • Chapter
  • First Online:
Neural Tissue Biomechanics

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 3))

Abstract

Brain tissue is a complex multiphase material. Its mechanical behaviour arises from the inherent viscoelastic nature of the neural and supporting cellular components and their interaction with the vasculature and interstitial fluid. Brain behaves as a very soft, highly nonlinear viscoelastic solid. It has been mechanically characterised in shear, tension and compression, but despite decades of research into its behaviour, there is still considerable debate about its precise mechanical properties. This chapter aims to present the most reliable mechanical data for brain tissue, and to explain how this behaviour is affect by age, disease and a range of experimental conditions under which mechanical measurements are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbogast, K.B., Margulies, S.S.: Regional differences in mechanical properties of the porcine central nervous system. In: Proceedings of the 41st Stapp Car Crash Conference, SAE (1997)

    Google Scholar 

  2. Arbogast, K.B., Margulies, S.S.: Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31(9), 801–807 (1998)

    Article  Google Scholar 

  3. Arbogast, K.B., Meaney, D.F., et al.: Biomechanical characterization of the constitutive relationship for the brainstem. In: Proceedings of the 39th Stapp Car Crash Conference, Coronado, CA, SAE (1995)

    Google Scholar 

  4. Atay, S.M., Kroenke, C.D., et al.: Measurement of the dynamic shear modulus of mouse brain tissue in vivo by magnetic resonance elastography. J. Biomech. Eng. 130(2), 021013 (2008)

    Article  Google Scholar 

  5. Bilston, L.E., Clarke, E.C., et al.: Brain tissue mechanical properties—making sense of 5 decades of test data. The Pathomechanics of Tissue Injury and Disease, and the Mechanophysiology of Healing. Gefen, A., Kerala, Research Signpost, pp. 1–18 (2008)

    Google Scholar 

  6. Bilston, L.E., Liu, Z., et al.: Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34(6), 377–385 (1997)

    Article  Google Scholar 

  7. Bilston, L.E., Liu, Z., et al.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(4), 335–345 (2001)

    Google Scholar 

  8. Brands, D.W.A., Bovendeerd, P. H. M., et al.: The large shear strain dynamic behaviour of in vitro porcine brain tissue and a silicone gel model material. Stapp Car Crash Conference, SAE (2000)

    Google Scholar 

  9. Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40(1), 117–124 (2007)

    Article  Google Scholar 

  10. Cheng, S., Clarke, E.C., et al.: Rheological properties of the tissues of the central nervous system: a review. Med. Eng. Phys. 30(10), 1318–1337 (2008)

    Article  Google Scholar 

  11. Chinzei, K., Miller, K.: Compression of swine brain tissue: experiment in vitro. J. Mech. Eng. Lab. 50(4), 106–115 (1996)

    Google Scholar 

  12. Clatz, O., Bondiau, P.-Y., et al.: In silico tumor growth: application to glioblastomas. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2004. In: Barillot, C., Haynor, D.R., Hellier, P. vol. 3217 pp. 337–345. Springer, Berlin (2004)

    Google Scholar 

  13. Czosnyka, M., Czosnyka, Z.H., et al.: Age dependence of cerebrospinal pressure-volume compensation in patients with hydrocephalus. J. Neurosurg. 94(3), 482–486 (2001)

    Article  Google Scholar 

  14. Deisboeck, T., Guiot, C.: Surgical impact on brain tumor invasion: a physical perspective. Ann. Surg. Innov. Res. 2(1), 1 (2008)

    Article  Google Scholar 

  15. Dodgson, M.C.H.: Colloidal structure of brain. Biorheology 1(1), 21–30 (1962)

    MathSciNet  Google Scholar 

  16. Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng.119(4), 423–432 (1997)

    Article  Google Scholar 

  17. Engin, A.E., Wang, H.C.: A mathematical model to determine viscoelastic behavior of in vivo primate brain. J. Biomech. 3(3), 283–296 (1970)

    Article  Google Scholar 

  18. Estes, M.S., McElhaney, J.H.: Response of brain tissue to compressive loading. ASME Paper 70-BHF-13 (1970)

    Google Scholar 

  19. Fallenstein, G.T., Hulce, V.D., et al.: Dynamic mechanical properties of human brain tissue. J. Biomech. 2(3), 217–226 (1969)

    Article  Google Scholar 

  20. Franke, E.K.: The response of the human skull to mechanical vibrations. Wright-Patterson Air Force Base, Ohio. WADC Technical Report No. 54–24 (1954)

    Google Scholar 

  21. Galford, J.E., McElhaney, J.H.: A viscoelastic study of scalp, brain, and dura. J. Biomech. 3, 211–221 (1970)

    Article  Google Scholar 

  22. Garo, A., Hrapko, M., et al.: Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post-mortem time and sample preparation. Biorheology 44(1), 51–59 (2007)

    Google Scholar 

  23. Gefen, A., Gefen, N., et al.: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20(11), 1163–1177 (2003)

    Article  Google Scholar 

  24. Gefen, A., Margulies, S.S.: Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37(9), 1339–1352 (2004)

    Article  Google Scholar 

  25. Hrapko, M., Dommelen, J.A.W.v., et al.: The influence of test conditions on characterization of the mechanical properties of brain tissue. J. Biomech. Eng. 130(3), 031003 (2008)

    Article  Google Scholar 

  26. Hyun, K., Kim, S.H., et al.: Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newtonian Fluid Mech. 107(1–3), 51–65 (2002)

    Article  MATH  Google Scholar 

  27. Klatt, D., Hamhaber, U., et al.: Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52(24):7281–7289 (2007)

    Article  Google Scholar 

  28. Koeneman, J.-B.: Viscoelastic properties of brain tissue. M.Sc. thesis, Case Institute of Technology (1966)

    Google Scholar 

  29. Larrat, B., Chan, Q.C., et al.: Anisotropic viscoelastic properties of the corpus callosum—application of high-resolution 3D MR-elastography to an Alzheimer mouse model. Ultrasonics symposium IEEE (2007)

    Google Scholar 

  30. Metz, H., McElhaney, J., et al.: A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 3, 453–458 (1970)

    Article  Google Scholar 

  31. Miller, K.: Biomechanics of soft tissues. Med. Sci. Monitor 6(1), 158–167 (2000)

    Google Scholar 

  32. Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11–12), 1115–1121 (1997)

    Article  Google Scholar 

  33. Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35(4), 483–490 (2002)

    Article  Google Scholar 

  34. Miller, K., Chinzei, K., et al.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33(11), 1369–1376 (2000)

    Article  Google Scholar 

  35. Nicolle, S., Lounis, M., et al.: Shear linear behavior of brain tissue over a large frequency range. Biorheology 42(3), 209–223 (2005)

    Google Scholar 

  36. Pena, A., Harris, N.G., et al.: Communicating hydrocephalus: the biomechanics of progressive ventricular enlargement revisited. Acta Neurochirurgica 81, 59–63 (2002) (Suppl.)

    Google Scholar 

  37. Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124(2), 244–252 (2002)

    Article  Google Scholar 

  38. Sack, I., Beierbach, B., et al.: The impact of aging and gender on brain viscoelasticity. Neuroimage 46(3), 652–657 (2009)

    Article  Google Scholar 

  39. Schiavone, P., Chassat, F., et al.: In vivo measurement of human brain elasticity using a light aspiration device. Med. Image Anal. 13(4), 673–678 (2009)

    Article  Google Scholar 

  40. Shen, F., Tay, T.E., et al.: Modified Bilston nonlinear viscoelastic model for finite element head injury studies. J. Biomech. Eng. 128(5), 797–801 (2006)

    Article  Google Scholar 

  41. Shuck, L.Z., Advani, S.H.: Rheological response of human brain tissue in shear. J. Basic Eng. 94, 905–911 (1972)

    Article  Google Scholar 

  42. Takhounts, E., Crandall, J.R., et al.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47, 79–92 (2003)

    Google Scholar 

  43. Tamura, A., Hayashi, S., et al.: Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2(3), 115–126 (2007)

    Article  Google Scholar 

  44. Thibault, K.L., Margulies, S.S.: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31(12), 1119–1126 (1998)

    Article  Google Scholar 

  45. Velardi, F., Fraternali, F., et al.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5(1), 53–61 (2006)

    Article  Google Scholar 

  46. Wang, H.C., Wineman, A.S.: A mathematical model for the determination of viscoelastic behavior of brain in vivo. II. Relaxation response. J. Biomech. 5(6), 571–580 (1972)

    Article  Google Scholar 

  47. Weaver, J.B., Perrinez, P.R., et al.: The effects of interstitial tissue pressure on the measured shear modulus in vivo. Medical Imaging: Physiology, Function, and Structure from Medical Images, In: Proceedings of SPIE. Manduca, A., Hu, X.P., SPIE. vol. 6511. pp. 1A-1–1A-11 (2007)

    Google Scholar 

  48. Wilhelm, M., Maring, D., et al.: Fourier-transform rheology. Rheologica Acta 37(4), 399–405 (1998)

    Article  Google Scholar 

  49. Wittek, A., Miller, K., et al.: Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40(4), 919–929 (2007)

    Article  Google Scholar 

  50. Wuerfel, J., Paul, F., et al.: MR-elastography reveals degradation of tissue integrity in multiple sclerosis. NeuroImage 49(3), 2520–2525 (2010)

    Article  Google Scholar 

  51. Xu, L., Lin, Y., et al.: Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiologica 48(3), 327–330 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Bilston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bilston, L.E. (2010). Brain Tissue Mechanical Properties. In: Bilston, L. (eds) Neural Tissue Biomechanics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_36

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13889-8

  • Online ISBN: 978-3-642-13890-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics