Skip to main content

Mathematical Modelling of Cell Adhesion in Tissue Engineering using Continuum Models

  • Chapter
  • First Online:
Cellular and Biomolecular Mechanics and Mechanobiology

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 4))

Abstract

Key factors in the formation of cell aggregates in tissue engineering and other fields are the cell–cell and cell–matrix interactions. Other important factors are culture conditions such as nutrient and oxygen supply and the characteristics of the environment (medium versus hydrogel). As mathematical models are increasingly used to investigate biological phenomena, it is important that processes such as cell adhesion are adequately described in the models. Recently a technique was developed to incorporate cell–cell and cell–matrix adhesion in continuum models through the use of non-local terms. In this study we apply this technique to model adhesion in a cell-in-gel culture set-up often found in tissue engineering applications. We briefly describe the biological issues underlying this study and the various modelling techniques used to capture adhesive behaviour. We furthermore elaborate on the numerical techniques that were developed in the course of this study. Finally, we consider a tissue engineering model that describes the spatiotemporal evolution of the concentration of cells, matrix, hydrogel, matrix degrading enzymes and oxygen/nutrients in a cell-in-gel culture system. Sensitivity analyses indicate a clear influence of the different adhesive processes on the final cell and collagen density and distribution, demonstrating the significance of cell adhesion in tissue engineering and the potential of the proposed mathematical technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The function Ω is of course distinct from the spatial domain Ω but no confusion should arise.

  2. 2.

    For our model, see  Sect. 2, we have L = 4 and in the corresponding model simulations presented in  Sect. 4 we employ N = 1,600, leading to h = 2.5 × 10−3

References

  1. Alber, M.S., Kiskowski, M.A., Glazier, J.A., Jiang, Y.: On cellular automaton approaches to modelling biological cells. In: Rosenthal, J., Gilliam, D.S. (eds) Mathematical Systems Theory in Biology, Communication, and Finance, IMA. Springer, New York, pp. 1–40 (2002)

    Google Scholar 

  2. Anderson, A., Chaplain, M.A.J., Rejniak, K.: Single-cell Based Models in Biology and Medicine. Birkhäuser, Basel (2003)

    Google Scholar 

  3. Armstrong, N., Painter, K., Sherratt, J.: Adding adhesion to a chemical signaling model for somite formation. Bull. Math. Biol. 71(1), 1–24. doi:10.1007/s11538-008-9350-1

    Google Scholar 

  4. Armstrong, N.J., Painter, K.J., Sherratt, J.A.: A continuum approach to modelling cell–cell adhesion. J. Theor. Biol. 243(1), 98–113 (2006). doi:10.1016/j.jtbi.2006.05.030

    Google Scholar 

  5. Byrne, H.M., Chaplain, M.A.J.: Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math. Comput. Model. 24(12), 1–17 (1996). doi:10.1016/S0895-7177(96)00174-4

    Google Scholar 

  6. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drasdo, D.: On selected individual-based approaches to the dynamics of multicellular systems. In: Alt,W., Chaplain, M., Griebel, M. (eds) Multiscale modelling. Birkhäuser, Basel (2003)

    Google Scholar 

  8. Geris, L., Gerisch, A., Sloten, J.V., Weiner, R., Oosterwyck, H.V.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251(1), 137–158 (2008). ISSN 0022-5193. doi:10.1016/j.jtbi.2007.11.008

    Google Scholar 

  9. Geris, L., Peiffer, V., Demol, J., Van Oosterwyck, H.: Modelling of in vitro mesenchymal stem cell cultivation, chondrogenesis and osteogenesis. J. Biomech. 41, 466 (2008)

    Article  Google Scholar 

  10. Gerisch, A.: On the approximation and efficient evaluation of integral terms in PDE models of cell adhesion. IMA J Numer Anal 30(1), 173–194 (2010). doi:10.1093/imanum/drp027

    Google Scholar 

  11. Gerisch, A.: Numerical treatment of nonperiodic boundary conditions in a nonlocal continuous model of cell adhesion. In preparation (2010)

    Google Scholar 

  12. Gerisch, A., Chaplain, M.A.J.: Robust numerical methods for taxis–diffusion–reaction systems: applications to biomedical problems. Math. Comput. Model. 43, 49–75 (2006). doi:10.1016/j.mcm.2004.05.016

    Google Scholar 

  13. Gerisch, A., Chaplain, M.A.J.: Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion. J. Theor. Biol. 250, 684–704 (2008). doi:10.1016/j.jtbi.2007.10.026

    Google Scholar 

  14. Gerisch, A., Painter, K.: Mathematical modelling of cell adhesion and its applications to developmental biology and cancer invasion. In Arnaud, C., Luigi, P., Verdier C. (eds) Cell Mechanics: From Single Scale-Based Models to Multiscale modelling, chapter 12. CRC Press, pp. 313–341 (2010). http://www.crcpress.com/product/isbn/9781420094541

    Google Scholar 

  15. Hillen, T.: M 5 mesoscopic and macroscopic models for mesenchymal motion. J. Math. Biol. 53(4), 585–616 (2006). doi:10.1007/s00285-006-0017-y

    Google Scholar 

  16. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, volume 33 of Springer Series in Computational Mathematics. Springer, New York (2003)

    Google Scholar 

  17. Khademhosseini, A., Langer, R., Borenstein, J., Vacanti, J.P.: Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006)

    Article  Google Scholar 

  18. Langer, R., Tirrell, D.A.: Designing materials for biology and medicine. Nature 428, 487–492 (2004)

    Article  Google Scholar 

  19. Lenas, P., Moos, M., Luyten, F.P.: Developmental engineering: A new paradigm for the design and manufacturing of cell-based products. Part I. From three-dimensional cell growth to biomimetics of in vivo development. Tiss. Eng. B 15, 381–394 (2009)

    Article  Google Scholar 

  20. Macklin, P., Lowengrub, J.: Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245, 677–704 (2007)

    Article  MathSciNet  Google Scholar 

  21. Moreira, J., Deutsch, A.: Cellular automata models of tumour developmenta critical review. Adv. Complex Syst. 5, 247–267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Painter, K.: Modelling cell migration strategies in the extracellular matrix. J. Math. Biol. 58, 511–543 (2009). doi:10.1007/s00285-008-0217-8

    Google Scholar 

  23. Sherratt, J.A., Gourley, S.A., Armstrong, N.J., Painter, K.J.: Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. Eur. J. Appl. Math. 20(01), 123–144 (2009). ISSN 0956-7925. doi:10.1017/S0956792508007742

    Google Scholar 

  24. Strang, G.: The discrete cosine transform. SIAM Rev. 41(1), 135–147 (1999). doi:10.1137/S0036144598336745

    Google Scholar 

  25. Weiner, R., Schmitt, B.A., Podhaisky, H.: ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs. Appl. Numer. Math. 25, 303–319 (1997). doi:10.1016/S0168-9274(97)00067-6

    Google Scholar 

  26. Yamada, K.M., Cukierman, E.: modelling tissue morphogenesis and cancer in 3d. Cell 130, 601–610 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

L.G. is a postdoctoral research fellow of the Research Foundation Flanders (FWO). This work is part of Prometheus, the Leuven Research & Development Division of Skeletal Tissue Engineering of the Katholieke Universiteit Leuven: http://www.kuleuven.be/prometheus. A.G. gratefully acknowledges financial support by the Division of Mathematics, University of Dundee during a long-term visit in 2007 introducing him to the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liesbet Geris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geris, L., Gerisch, A. (2010). Mathematical Modelling of Cell Adhesion in Tissue Engineering using Continuum Models. In: Gefen, A. (eds) Cellular and Biomolecular Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_33

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14217-8

  • Online ISBN: 978-3-642-14218-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics