Skip to main content

The Physical Mechanical Processes that Shape Tissues in the Early Embryo

  • Chapter
  • First Online:
Cellular and Biomolecular Mechanics and Mechanobiology

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 4))

  • 1972 Accesses

Abstract

The morphology of a multicellular organism and its internal organs is determined by interactions between an organism’s genome and the physical properties of living matter. Recent successes in sequencing the genome have revived interest the generation of physical shape, or morphogenesis, the physical properties of living matter, and how biological and biophysical processes shape that living matter during development. One of the goals of modern developmental biology is to understand how tissues are shaped and how physiological function is initiated. Remarkable advances in cell and molecular biology have led to a wealth of data on the molecular mechanisms required during early development. More recently, developmental biologists have been turning to biophysical and bioengineering approaches to understand how embryos as well as organs are shaped by these molecular mechanisms. These studies are finding hints that mechanical processes may be playing novel roles in developing embryos in addition to their direct roles in shaping tissues. Many early molecular pathways regulating cell differentiation and embryonic morphogenesis are reused as tumors grow and metastasize and during the regeneration of injured or damaged tissues. These discoveries have attracted cancer biologists and tissue engineers to join developmental biologists in studying the mechanical processes that drive morphogenesis. In this review we will present a short primer for the engineer on developmental biology and embryonic morphogenesis and then describe experimental and theoretical approaches to investigate the physical principles of morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkas, N.: NATO advanced research workshop on biomechanics of cell division (1986: Istanbul, Turkey). In: NATO ASI series. Series A, Life Sciences, vol. 132. Plenum Press, New York (1987)

    Google Scholar 

  2. Akkas, N.: NATO advanced study institute on biomechanics of active movement and deformation of cells (1989: Istanbul, Turkey). In: NATO ASI series. Series H, Cell Biology, vol. 42. Springer, New York (1990)

    Google Scholar 

  3. Akkas, N.: Biomechanics of active cell movement and division of cells. In: NATO ASI series. Series H, Cell biology, vol. 84. Springer, New York (1994)

    Google Scholar 

  4. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular biology of the cell. Garland Science, New York (2008)

    Google Scholar 

  5. Beningo, K.A., Dembo, M., Kaverina, I., Small, J.V., Wang, Y.L.: Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001)

    Google Scholar 

  6. Bereiter-Hahn, J., Anderson, O.R., Reif, W.-E.: Cytomechanics; the mechanical basis of cell form and structure, pp. 294. Springer, New York (1987)

    Google Scholar 

  7. Bertet, C., Sulak, L., Lecuit, T.: Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004)

    Google Scholar 

  8. Blankenship, J.T., Backovic, S.T., Sanny, J.S., Weitz, O., Zallen, J.A.: Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006)

    Google Scholar 

  9. Bolis, L., Maddrell, S.H.P., Schmidt-Nielsen, K.: Comparative physiology: functional aspects of structural materials. In: Proceedings of the International Conference on Comparative Physiology, Ascona 1974, pp. 268. North-Holland Publications, Amsterdam (1975)

    Google Scholar 

  10. Bray, D.: Cell movements: from molecules to motility. Garland Publications, New York (2001)

    Google Scholar 

  11. Brodland, G.W.: The Differential Interfacial Tension Hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124, 188–197 (2002)

    Google Scholar 

  12. Brodland, G.W.: Do lamellipodia have the mechanical capacity to drive convergent extension? Int. J. Dev. Biol. 50, 151–155 (2006)

    Google Scholar 

  13. Brodland, G.W., Veldhuis, J.H.: Lamellipodium-driven tissue reshaping: a parametric study. Comput. Methods Biomech. Biomed. Eng. 9, 17–23 (2006)

    Google Scholar 

  14. Brouzes, E., Farge, E.: Interplay of mechanical deformation and patterned gene expression in developing embryos. Curr. Opin. Genet. Dev. 14, 367–374 (2004)

    Google Scholar 

  15. Butschli, O.: Bemerkungen zur mechanishen erklarung der gastrula-invagination, vol. 4, pp. 3–13. Sitzungsberichte Akademie Wissenschaffen, Heidelberg (1915)

    Google Scholar 

  16. Chan, C.E., Odde, D.J.: Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008)

    Google Scholar 

  17. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Geometric control of cell life and death. Science 276, 1425–1428 (1997)

    Google Scholar 

  18. Chen, X., Brodland, G.W.: Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Phys. Biol. 5, 15003 (2008)

    Google Scholar 

  19. Chen, X., Gumbiner, B.M.: Crosstalk between different adhesion molecules. Curr. Opin. Cell Biol. 18, 572–578 (2006)

    Google Scholar 

  20. Cheshire, A.M., Kerman, B.E., Zipfel, W.R., Spector, A.A., Andrew, D.J.: Kinetic and mechanical analysis of live tube morphogenesis. Dev. Dyn. 237, 2874–2888 (2008)

    Google Scholar 

  21. Choi, C.K., Vicente-Manzanares, M., Zareno, J., Whitmore, L.A., Mogilner, A., Horwitz, A.R.: Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. (2008)

    Google Scholar 

  22. Cole, K.S.: Surface forces of the Arbacia egg. J. Cell Comp. Physiol. 1, 1–9 (1932)

    Google Scholar 

  23. Cole, K.S., Michaelis, E.M.: Surface forces of fertilized Arbacia eggs. J. Cell. Comp. Physiol. 2, 121–126 (1932)

    Google Scholar 

  24. Conte, V., Munoz, J.J., Baum, B., Miodownik, M.: Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Phys. Biol. 6, 016010 (2009)

    Google Scholar 

  25. Davidson, E.H., Levine, M.S.: Properties of developmental gene regulatory networks. Proc. Natl. Acad. Sci. USA 105, 20063–20066 (2008)

    Google Scholar 

  26. Davidson, L., Keller, R.: Measuring mechanical properties of embryos and embryonic tissues. Methods Cell Biol. 83, 425–439 (2007)

    Google Scholar 

  27. Davidson, L.A., Ezin, A.M., Keller, R.: Embryonic wound healing by apical contraction and ingression in Xenopus laevis. Cell Motil. Cytoskelet. 53, 163–176 (2002)

    Google Scholar 

  28. Davidson, L.A., Joshi, S.D., Kim, H.Y., von Dassow, M., Zhang, L., Zhou, J.: Emergent morphogenesis: elastic mechanics of a self-deforming tissue. J. Biomech. 43, 63–70 (2010)

    Google Scholar 

  29. Davidson, L.A., Keller, R., Desimone, D.W.: Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis. Dev. Dyn. 231, 888–895 (2004)

    Google Scholar 

  30. Davidson, L.A., Koehl, M.A., Keller, R., Oster, G.F.: How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–2018 (1995)

    Google Scholar 

  31. Davidson, L.A., Marsden, M., Keller, R., Desimone, D.W.: Integrin alpha5beta1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr. Biol. 16, 833–844 (2006)

    Google Scholar 

  32. Davidson, L.A., Oster, G.F., Keller, R.E., Koehl, M.A.: Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 209, 221–238 (1999)

    Google Scholar 

  33. Desprat, N., Supatto, W., Pouille, P.A., Beaurepaire, E., Farge, E.: Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008)

    Google Scholar 

  34. Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)

    Google Scholar 

  35. Domingo, C., Keller, R.: Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis. Development 121, 3311–3321 (1995)

    Google Scholar 

  36. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Google Scholar 

  37. Even-Ram, S., Artym, V., Yamada, K.M.: Matrix control of stem cell fate. Cell 126, 645–647 (2006)

    Google Scholar 

  38. Farge, E.: Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003)

    Google Scholar 

  39. Farhadifar, R., Roper, J.C., Aigouy, B., Eaton, S., Julicher, F.: The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007)

    Google Scholar 

  40. Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J.C., Eaton, S., Zallen, J.A.: Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009)

    Google Scholar 

  41. Forgacs, G., Newman, S.A.: Biological physics of the developing embryo. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  42. Fristrom, D.: The cellular basis of epithelial morphogenesis: a review. Tissue Cell 20(5), 645–690 (1988)

    Google Scholar 

  43. Fujimori, T.: Preimplantation development of mouse: a view from cellular behavior. Dev. Growth Differ. 52, 253–262 (2010)

    Google Scholar 

  44. Fung, Y.C.: Biomechanics: mechanical properties of living tissues. Springer, Berlin (1981)

    Google Scholar 

  45. Fung, Y.C.: Biomechanics: motion, flow, stress, and growth. Springer, New York (1991)

    Google Scholar 

  46. Gardel, M.L., Nakamura, F., Hartwig, J.H., Crocker, J.C., Stossel, T.P., Weitz, D.A.: Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl. Acad. Sci. USA 103, 1762–1767 (2006)

    Google Scholar 

  47. Goto, T., Davidson, L., Asashima, M., Keller, R.: Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15, 787–793 (2005)

    Google Scholar 

  48. Green, J.B., Davidson, L.A.: Convergent extension and the hexahedral cell. Nat. Cell Biol. 9, 1010–1015 (2007)

    Google Scholar 

  49. Gupton, S.L., Waterman-Storer, C.M.: Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125, 1361–1374 (2006)

    Google Scholar 

  50. Harris, M.J., Juriloff, D.M.: Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 79, 187–210 (2007)

    Google Scholar 

  51. Hayashi, T., Carthew, R.W.: Surface mechanics mediate pattern formation in the developing retina. Nature 431, 647–652 (2004)

    Google Scholar 

  52. Hiramoto, Y.: Mechanical properties of sea urchin eggs. II. Changes in the mechanical properties from fertilization to cleavage. Exp. Cell Res. 32, 76 (1963)

    Google Scholar 

  53. Hiramoto, Y.: Observations and measurements of sea urchin eggs with a centrifuge microscope. J. Cell Physiol. 69, 216–230 (1967)

    Google Scholar 

  54. Hiramoto, Y.: Mechanical properties of the surface of the sea urchin egg at fertilization and during cleavage. Exp. Cell Res. 89(2), 320–326 (1974)

    Google Scholar 

  55. Hiramoto, Y.: Determination of mechanical properties of the egg surface by elastimetry. Methods Cell Biol. 27, 435–442 (1986)

    Google Scholar 

  56. His, W.: Unsere korperform und das physiologische problem ihrer entstehung. F.C.W. Vogel, Leipzig (1874)

    Google Scholar 

  57. Howard, J.: Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  58. Hutson, M.S., Tokutake, Y., Chang, M.S., Bloor, J.W., Venakides, S., Kiehart, D.P., Edwards, G.S.: Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003)

    Google Scholar 

  59. Hutson, M.S., Veldhuis, J., Ma, X., Lynch, H.E., Cranston, P.G., Brodland, G.W.: Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics. Biophys. J. 97, 3075–3085 (2009)

    Google Scholar 

  60. Huxley, T.H.: On the physical basis of life. Conn, New Haven (1870)

    Google Scholar 

  61. Hyodo-Miura, J., Yamamoto, T.S., Hyodo, A.C., Iemura, S., Kusakabe, M., Nishida, E., Natsume, T., Ueno, N.: XGAP, an ArfGAP, is required for polarized localization of PAR proteins and cell polarity in Xenopus gastrulation. Dev. Cell 11, 69–79 (2006)

    Google Scholar 

  62. Ingber, D.E.: Mechanical control of tissue morphogenesis during embryological development. Int. J. Dev. Biol. 50, 255–266 (2006)

    Google Scholar 

  63. Irvine, K.D., Wieschaus, E.: Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994)

    Google Scholar 

  64. Janmey, P.A., Georges, P.C., Hvidt, S.: Basic rheology for biologists. Methods Cell Biol. 83, 3–27 (2007)

    Google Scholar 

  65. Jiang, X., Bruzewicz, D.A., Wong, A.P., Piel, M., Whitesides, G.M.: Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. USA 102, 975–978 (2005)

    Google Scholar 

  66. Kalantarian, A., Ninomiya, H., Saad, S.M., David, R., Winklbauer, R., Neumann, A.W.: Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation. Biophys. J. 96, 1606–1616 (2009)

    Google Scholar 

  67. Kay, B.K., Peng, H.B.: Xenopus laevis: practical uses in cell and molecular biology. Academic Press, New York (1991)

    Google Scholar 

  68. Keller, R., Davidson, L., Edlund, A., Elul, T., Ezin, M., Shook, D., Skoglund, P.: Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. Lond. B 355, 897–922 (2000)

    Google Scholar 

  69. Kilian, K.A., Bugarija, B., Lahn, B.T., Mrksich, M.: Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 107, 4872–4877 (2010)

    Google Scholar 

  70. Klein, S.L., Strausberg, R.L., Wagner, L., Pontius, J., Clifton, S.W., Richardson, P.: Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev. Dyn. 225, 384–391 (2002)

    Google Scholar 

  71. Koenderink, G.H., Dogic, Z., Nakamura, F., Bendix, P.M., MacKintosh, F.C., Hartwig, J.H., Stossel, T.P., Weitz, D.A.: An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci. USA 106, 15192–15197 (2009)

    Google Scholar 

  72. Kolega, J.: The role of myosin II motor activity in distributing myosin asymmetrically and coupling protrusive activity to cell translocation. Mol. Biol. Cell 17, 4435–4445 (2006)

    Google Scholar 

  73. Krieg, M., Arboleda-Estudillo, Y., Puech, P.H., Kafer, J., Graner, F., Muller, D.J., Heisenberg, C.P.: Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008)

    Google Scholar 

  74. Kumar, S., Weaver, V.M.: Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009)

    Google Scholar 

  75. Kurpios, N.A., Ibanes, M., Davis, N.M., Lui, W., Katz, T., Martin, J.F., Belmonte, J.C., Tabin, C.J.: The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc. Natl. Acad. Sci. USA 105, 8499–8506 (2008)

    Google Scholar 

  76. Kwan, K.M., Kirschner, M.W.: A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis. Development 132, 4599–4610 (2005)

    Google Scholar 

  77. Lacayo, C.I., Pincus, Z., VanDuijn, M.M., Wilson, C.A., Fletcher, D.A., Gertler, F.B., Mogilner, A., Theriot, J.A.: Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol. 5, e233 (2007)

    Google Scholar 

  78. Lander, A.D.: Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256 (2007)

    Google Scholar 

  79. Lander, A.D., Nie, Q., Wan, F.Y.: Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002)

    Google Scholar 

  80. Lane, M.C., Keller, R.: Microtubule disruption reveals that Spemann’s Organizer is subdivided into two domains by the vegetal alignment zone. Development 124, 895–906 (1997)

    Google Scholar 

  81. Lauffenburger, D.A., Horwitz, A.F.: Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)

    Google Scholar 

  82. Lecuit, T., Lenne, P.F.: Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007)

    Google Scholar 

  83. Lee, J.Y., Harland, R.M.: Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells. Dev. Biol. 311, 40–52 (2007)

    Google Scholar 

  84. Leptin, M., Grunewald, B.: Cell shape changes during gastrulation in Drosophila. Development 110(1), 73–84 (1990)

    Google Scholar 

  85. Lewis, W.H.: Mechanics of invagination. Anat. Rec. 97, 139–56 (1947)

    Google Scholar 

  86. Liu, W., Sato, A., Khadka, D., Bharti, R., Diaz, H., Runnels, L.W., Habas, R.: Mechanism of activation of the Formin protein Daam1. Proc. Natl. Acad. Sci. USA 105, 210–215 (2008)

    Google Scholar 

  87. Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)

    Google Scholar 

  88. Lubarsky, B., Krasnow, M.A.: Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003)

    Google Scholar 

  89. Ma, X., Lynch, H.E., Scully, P.C., Hutson, M.S.: Probing embryonic tissue mechanics with laser hole drilling. Phys. Biol. 6, 036004 (2009)

    Google Scholar 

  90. Mammoto, T., Ingber, D.E. Mechanical control of tissue and organ development. Development 137, 1407–1420

    Google Scholar 

  91. Martin, A.C., Kaschube, M., Wieschaus, E.F.: Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009)

    Google Scholar 

  92. Martin, P., Lewis, J.: Actin cables and epidermal movement in embryonic wound healing. Nature 360(6400), 179–183 (1992)

    Google Scholar 

  93. Miyata, H., Yoshikawa, H., Hakozaki, H., Suzuki, N., Furuno, T., Ikegami, A., Kinosita, K., Jr., Nishizaka, T., Ishiwata, S.: Mechanical measurements of single actomyosin motor force. Biophys. J. 68, 286S–289S (discussion 289S–290S) (1995).

    Google Scholar 

  94. Moore, A.R.: On the mechanics of gastrulation in Dendraster excentricus. J. Exp. Zool. 87, 101–111 (1941)

    Google Scholar 

  95. Moore, S.W.: A fiber optic system for measuring dynamic mechanical properties of embryonic tissues. IEEE Trans. Biomed. Eng. 41, 45–50 (1994)

    Google Scholar 

  96. Moore, S.W., Keller, R.E., Koehl, M.A.R.: The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus leavis. Development 121, 3130–3140 (1995)

    Google Scholar 

  97. Morgan, T.H.: Experimental embryology: Columbia University Press, New York (1927)

    Google Scholar 

  98. Munevar, S., Wang, Y., Dembo, M.: Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001)

    Google Scholar 

  99. Nakajima, Y., Burke, R.D.: The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells. Dev. Biol. 179, 436–446 (1996)

    Google Scholar 

  100. Nanavati, C., Fernandez, J.M.: The secretory granule matrix: a fast-acting smart polymer. Science 259, 963–965 (1993)

    Google Scholar 

  101. Nemer, M.: Genetic insights into normal and abnormal heart development. Cardiovasc. Pathol. 17, 48–54 (2008)

    Google Scholar 

  102. Niehrs, C.: On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137, 845–857 (2010)

    Google Scholar 

  103. NSTC: Strategies for advancing tissue science and engineering: foundation for the future, pp. 52. Washington, D.C. (2007)

    Google Scholar 

  104. Odell, G.M., Oster, G., Alberch, P., Burnside, B.: The mechanical basis of morphogenesis. Dev. Biol. 85, 446–462 (1981)

    Google Scholar 

  105. Oster, G., Weliky, M.: Morphogenesis by cell rearrangement: a computer simulation approach. Semin. Dev. Biol. 1, 313–323 (1990)

    Google Scholar 

  106. Paluch, E., Heisenberg, C.P.: Biology and physics of cell shape changes in development. Curr. Biol. 19, R790–R799 (2009)

    Google Scholar 

  107. Park, T.J., Gray, R.S., Sato, A., Habas, R., Wallingford, J.B.: Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos. Curr. Biol. 15, 1039–1044 (2005)

    Google Scholar 

  108. Paszek, M.J., Weaver, V.M.: The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9, 325–342 (2004)

    Google Scholar 

  109. Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D. et al.: Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005)

    Google Scholar 

  110. Pelham, R.J., Jr., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13661–13665 (1997)

    Google Scholar 

  111. Peralta, X.G., Toyama, Y., Kiehart, D.P., Edwards, G.S.: Emergent properties during dorsal closure in Drosophila morphogenesis. Phys. Biol. 5, 15004 (2008)

    Google Scholar 

  112. Peter, I.S., Davidson, E.H.: Modularity and design principles in the sea urchin embryo gene regulatory network. FEBS Lett. 583, 3948–3958 (2009)

    Google Scholar 

  113. Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)

    Google Scholar 

  114. Ponti, A., Machacek, M., Gupton, S.L., Waterman-Storer, C.M., Danuser, G.: Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004)

    Google Scholar 

  115. Pouille, P.A., Ahmadi, P., Brunet, A.C., Farge, E.: Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal 2, ra16 (2009)

    Google Scholar 

  116. Poynter, G., Huss, D., Lansford, R.: Japanese quail: an efficient animal model for the production of transgenic avians. CSH Protocol 2009, pdb emo112 (2009)

    Google Scholar 

  117. Quintin, S., Gally, C., Labouesse, M.: Epithelial morphogenesis in embryos: asymmetries, motors and brakes. Trends Genet. 24, 221–230 (2008)

    Google Scholar 

  118. Ramasubramanian, A., Latacha, K.S., Benjamin, J.M., Voronov, D.A., Ravi, A., Taber, L.A.: Computational model for early cardiac looping. Ann. Biomed. Eng. 34, 1655–1669 (2006)

    Google Scholar 

  119. Ramos, J.W., Whittaker, C.A., DeSimone, D.W.: Integrin-dependent adhesive activity is spatially controlled by inductive signals at gastrulation. Development 122, 2873–2883 (1996)

    Google Scholar 

  120. Rauzi, M., Verant, P., Lecuit, T., Lenne, P.F.: Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410 (2008)

    Google Scholar 

  121. Rhumbler, L.: Zur mechanik des gastrulationsvorganges insbesondere der invagination. Archiv Fur Entwicklungsmechanic 14, 401–476 (1902)

    Google Scholar 

  122. Rodriguez-Diaz, A., Toyama, Y., Abravanel, D.L., Wiemann, J.M., Wells, A.R., Tulu, U.S., Edwards, G.S., Kiehart, D.P.: Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient. HFSP J. 2, 220–237 (2008)

    Google Scholar 

  123. Rolo, A., Skoglund, P., Keller, R.: Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB. Dev. Biol. 327, 327–338 (2009)

    Google Scholar 

  124. Sato, A., Khadka, D.K., Liu, W., Bharti, R., Runnels, L.W., Dawid, I.B., Habas, R.: Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development 133, 4219–4231 (2006)

    Google Scholar 

  125. Sawyer, J.M., Harrell, J.R., Shemer, G., Sullivan-Brown, J., Roh-Johnson, M., Goldstein, B.: Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341, 5–19 (2010)

    Google Scholar 

  126. Schoenwolf, G.C., Smith, J.L.: Epithelial cell wedging: a fundamental cell behavior contributing to hinge point formation during epithelial morphogenesis. Semin. Dev. Biol. 1, 325–334 (1990)

    Google Scholar 

  127. Schroeder, T.E.: Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J. Embryol. Exp. Morphol. 23(2), 427–462 (1970)

    Google Scholar 

  128. Schwartz, M.A., DeSimone, D.W.: Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 20, 551–556 (2008)

    Google Scholar 

  129. Selman, G.G.: The forces producing neural closure in amphibia. J. Embryol. Exp. Morphol. 6, 448–465 (1958)

    Google Scholar 

  130. Shih, J., Keller, R.: Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116(4), 915–930 (1992)

    Google Scholar 

  131. Shook, D., Keller, R.: Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech. Dev. 120, 1351–1383 (2003)

    Google Scholar 

  132. Sinner, D., Kirilenko, P., Rankin, S., Wei, E., Howard, L., Kofron, M., Heasman, J., Woodland, H.R., Zorn, A.M.: Global analysis of the transcriptional network controlling Xenopus endoderm formation. Development 133, 1955–1966 (2006)

    Google Scholar 

  133. Sive, H.L., Grainger, R.M., Harland, R.M.: Early development of Xenopus laevis: a laboratory manual, pp. 338. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2000)

    Google Scholar 

  134. Skoglund, P., Rolo, A., Chen, X., Gumbiner, B.M., Keller, R.: Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network. Development 135, 2435–2444 (2008)

    Google Scholar 

  135. Smith, J.L., Schoenwolf, G.C.: Neurulation: coming to closure. Trends Neurosci. 20, 510–517 (1997)

    Google Scholar 

  136. Smith, J.L., Schoenwolf, G.C., Quan, J.: Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate. J. Comp. Neurol. 342, 144–151 (1994)

    Google Scholar 

  137. Solon, J., Kaya-Copur, A., Colombelli, J., Brunner, D.: Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009)

    Google Scholar 

  138. Spek, J.: Differenzen im quellungszustand der plasmakolloide als eine ursache der gastrulainvagination, sowie der einstulpungen und faltungen von zellplatten uberhaupt. Kolloidchemische Beihefte 9, 259–399 (1918)

    Google Scholar 

  139. Stein, W.D., Bronner, F.: Cell Shape: determinants, regulation, and regulatory role. Academic Press, San Diego (1989)

    Google Scholar 

  140. Stern, C.D.: Gastrulation: from cells to embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)

    Google Scholar 

  141. Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry [see comments]. Nature 365(6448), 721–727 (1993)

    Google Scholar 

  142. Sweeton, D., Parks, S., Costa, M., Wieschaus, E.: Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112(3), 775–789 (1991)

    Google Scholar 

  143. Tan, J.L., Tien, J., Pirone, D.M., Gray, D.S., Bhadriraju, K., Chen, C.S.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100, 1484–1489 (2003)

    Google Scholar 

  144. Tanegashima, K., Zhao, H., Dawid, I.B.: WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. Embo. J. 27, 606–617 (2008)

    Google Scholar 

  145. Thompson, D.A.W.: On growth and form. Cambridge University Press, London (1917)

    Google Scholar 

  146. Toyama, Y., Peralta, X.G., Wells, A.R., Kiehart, D.P., Edwards, G.S.: Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321, 1683–1686 (2008)

    Google Scholar 

  147. Trinkaus, J.P.: Cells into organs: the forces that shape the embryo. Prentice-Hall Inc., Englewood Cliffs (1984)

    Google Scholar 

  148. VanBuren, P., Guilford, W.H., Kennedy, G., Wu, J., Warshaw, D.M.: Smooth muscle myosin: a high force-generating molecular motor. Biophys. J. 68, 256S–258S; 258S–259S (1995)

    Google Scholar 

  149. Vincent, J.V.: Structural biomaterials. Princeton University Press, Princeton (1990)

    Google Scholar 

  150. Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R.E., Stern, C.D.: The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449, 1049–1052 (2007)

    Google Scholar 

  151. von Dassow, M., Davidson, L.A.: Variation and robustness of the mechanics of gastrulation: the role of tissue mechanical properties during morphogenesis. Birth Defects Res. C Embryo Today 81, 253–269 (2007)

    Google Scholar 

  152. von Dassow, M., Davidson, L.A.: Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness. Dev. Dyn. 238, 2–18 (2009)

    Google Scholar 

  153. Waddington, C.H.: Order of magnitude of morphogenetic forces. Nature 144(3649), 637 (1939)

    Google Scholar 

  154. Waddington, C.H.: Observations on the forces of morphogenesis in the amphibian embryo. J. Exp. Biol. 19, 284–293 (1942)

    Google Scholar 

  155. Wainwright, S.A., Biggs, W.D., Currey, J.D., Gosline, J.M.: Mechanical design in organisms. Wiley, New York (1976)

    Google Scholar 

  156. Waitzman, N.J., Romano, P.S., Scheffler, R.M.: Estimates of the economic costs of birth defects. Inquiry 31, 188–205 (1994)

    Google Scholar 

  157. Wallingford, J.B., Fraser, S.E., Harland, R.M.: Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002)

    Google Scholar 

  158. Wallingford, J.B., Rowning, B.A., Vogeli, K.M., Rothbacher, U., Fraser, S.E., Harland, R.M.: Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000)

    Google Scholar 

  159. Wang, H.B., Dembo, M., Wang, Y.L.: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279, C1345–C1350 (2000)

    Google Scholar 

  160. Weiser, D.C., Row, R.H., Kimelman, D.: Rho-regulated Myosin phosphatase establishes the level of protrusive activity required for cell movements during zebrafish gastrulation. Development 136, 2375–2384 (2009)

    Google Scholar 

  161. Weliky, M., Minsuk, S., Keller, R., Oster, G.: Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension. Development 113(4), 1231–1244 (1991)

    Google Scholar 

  162. Wiebe, C., Brodland, G.W.: Tensile properties of embryonic epithelia measured using a novel instrument. J. Biomech. 38, 2087–2094 (2005)

    Google Scholar 

  163. Witzel, S., Zimyanin, V., Carreira-Barbosa, F., Tada, M., Heisenberg, C.P.: Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. J. Cell Biol. 175, 791–802 (2006)

    Google Scholar 

  164. Wood, W., Jacinto, A., Grose, R., Woolner, S., Gale, J., Wilson, C., Martin, P.: Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4, 907–912 (2002)

    Google Scholar 

  165. Wozniak, M.A., Chen, C.S.: Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009)

    Google Scholar 

  166. Xia, N., Thodeti, C.K., Hunt, T.P., Xu, Q., Ho, M., Whitesides, G.M., Westervelt, R., Ingber, D.E.: Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. Faseb. J. 22(6):1649–1659 (2008)

    Google Scholar 

  167. Xu, N., Keung, B., Myat, M.M.: Rho GTPase controls invagination and cohesive migration of the Drosophila salivary gland through Crumbs and Rho-kinase. Dev. Biol. 321, 88–100 (2008)

    Google Scholar 

  168. Yam, P.T., Wilson, C.A., Ji, L., Hebert, B., Barnhart, E.L., Dye, N.A., Wiseman, P.W., Danuser, G., Theriot, J.A.: Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178, 1207–1221 (2007)

    Google Scholar 

  169. Yamanaka, Y., Tamplin, O.J., Beckers, A., Gossler, A., Rossant, J.: Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev. Cell 13, 884–896 (2007)

    Google Scholar 

  170. Ybot-Gonzalez, P., Savery, D., Gerrelli, D., Signore, M., Mitchell, C.E., Faux, C.H., Greene, N.D., Copp, A.J.: Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134, 789–799 (2007)

    Google Scholar 

  171. Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., Janmey, P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60, 24–34 (2005)

    Google Scholar 

  172. Yin, C., Kiskowski, M., Pouille, P.A., Farge, E., Solnica-Krezel, L.: Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J. Cell Biol. 180, 221–232 (2008)

    Google Scholar 

  173. Young, P.E., Pesacreta, T.C., Kiehart, D.P.: Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis. Development 111(1), 1–14 (1991)

    Google Scholar 

  174. Zajac, M., Jones, G.L., Glazier, J.A.: Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–2025 (2000)

    Google Scholar 

  175. Zajac, M., Jones, G.L., Glazier, J.A.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247–259 (2003)

    Google Scholar 

  176. Zamir, E.A., Taber, L.A.: Material properties and residual stress in the stage 12 chick heart during cardiac looping. J. Biomech. Eng. 126, 823–830 (2004a)

    Google Scholar 

  177. Zamir, E.A., Taber, L.A. On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng. Trans. Asme 126, 276–283 (2004b)

    Google Scholar 

  178. Zhong, Y., Brieher, W.M., Gumbiner, B.M.: Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J. Cell Biol. 144, 351–359 (1999)

    Google Scholar 

  179. Zhou, J., Kim, H.Y., Davidson, L.A.: Actomyosin stiffens the vertebrate embryo during critical stages of elongation and neural tube closure. Development 136, 677–688 (2009)

    Google Scholar 

  180. Ziherl, P.: Aggregates of two-dimensional vesicles: rouleaux, sheets, and convergent extension. Phys. Rev. Lett. 99, 128102 (2007)

    Google Scholar 

  181. Zohn, I.E., Anderson, K.V., Niswander, L.: Using genomewide mutagenesis screens to identify the genes required for neural tube closure in the mouse. Birth Defects Res. A Clin. Mol. Teratol. 73, 583–590 (2005)

    Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the NSF (IOS-0845775) and the NIH (HD044750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance A. Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davidson, L.A. (2010). The Physical Mechanical Processes that Shape Tissues in the Early Embryo. In: Gefen, A. (eds) Cellular and Biomolecular Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_29

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14217-8

  • Online ISBN: 978-3-642-14218-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics