Skip to main content

Constitutive Modelling of Brain Tissue for Prediction of Traumatic Brain Injury

  • Chapter
  • First Online:
Neural Tissue Biomechanics

Abstract

To develop protective measures for crash situations, an accurate assessment of injury risk is required. By using a Finite Element model of the head, the mechanical behaviour of the brain can be predicted for any acceleration and improved injury criteria can be developed and implemented into safety standards. Many head models are based on a detailed geometrical description of the anatomical components. However, for reliable predictions of injury, also an accurate constitutive model for brain tissue is required that is applicable for large deformations and complex loading conditions that occur during an impact to the head. This chapter deals with constitutive modelling of brain tissue. Different approaches towards modelling of the mechanical response of biological tissues are discussed. A short overview of the large strain behaviour of brain tissue and constitutive models that have been developed for this material is given. A non-linear viscoelastic model for brain tissue is then discussed in more detail. The model is based on a multi-mode Maxwell model and consists of a non-linear elastic mode in combination with a number of viscoelastic modes. For this model, also a numerical implementation scheme is given. The influences of constitutive non-linearities of brain tissue in numerical head model simulations are shown by comparing the performance of the model of Hrapko et al. with a simplified version, based on neo-Hookean elastic behaviour, and a third non-linear constitutive model from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to make a clear distinction between functional and mechanical damage. Functional damage can be considered as injury, i.e. change or loss of functionality of the brain tissue, whereas mechanical damage only affects the mechanical properties of the tissue. At these strain levels, functional damage may still occur (as observed by for example Bain and Meaney [2] and Morrison et al. [33]) and at larger time scales also mechanical changes could develop.

References

  1. Arbogast, K.B., Meaney, D.F., Thibault, L.E.: Biomechanical characterization of the constitutive relationship for the brainstem. In: Proceedings of the 39th Stapp Car Crash Conference, SAE 952716, pp. 153–159 (1995)

    Google Scholar 

  2. Bain, A.C., Meaney, D.F.: Tissue-level thresholds for axonal damage in an experimental model of cerebral nervous system white matter injury. J. Biomech. Eng. Trans. ASME 122(6), 615–622 (2000)

    Article  Google Scholar 

  3. Bandak, F.A., Eppinger, R.H.: A three-dimensional finite elements analysis of the human brain under combined rotational and translational accelerations. In: Proceedings of the 38th Stapp Car Crash Conference, SAE 942215, pp. 148–163 (1994)

    Google Scholar 

  4. Bilston, L.E., Liu, Z., Phan-Thien, N.: Large strain behavior of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(3), 335–345 (2001)

    Google Scholar 

  5. Brands, D.W.A.: Implementation of Sliding Interface in the tu/e fe Head Model. Technical Report, TNO Automotive, The Netherlands (2002)

    Google Scholar 

  6. Brands, D.W.A., Bovendeerd, P.H.M., Peters, G.W.M., Wismans, J.S.H.M.: The large shear strain dynamic behavior of in-vitro porcine brain tissue and the silicone gel model material. In: Proceedings of the 44th Stapp Car Crash Conference, SAE 2000-01-SC17, pp. 249–260 (2000)

    Google Scholar 

  7. Brands, D.W.A., Bovendeerd, P.H.M., Wismans, J.S.H.M.: On the potential importance of non-linear viscoelastic material modelling for numerical prediction of the tissue response: test and application. Stapp Car Crash J. 46(SAE 2002-22-0006), 103–121 (2002)

    Google Scholar 

  8. Brands, D.W.A., Peters, G.W.M., Bovendeerd, P.H.M.: Design and numerical implementation of a 3-d non-linear viscoelastic constitutive model for brain tissue during impact. J. Biomech. 37(1), 127–134 (2004)

    Article  Google Scholar 

  9. Claessens, M.H.A., Sauren, F., Wismans, J.S.H.M.: Modelling of the human head under impact conditions: a parametric study. In: Proceedings of the 41th Stapp Car Crash Conference, SAE 973338, pp. 315–328 (1997)

    Google Scholar 

  10. Darvish, K.K., Crandall, J.R.: Investigating Nonlinear Viscoelastic Properties of Brain Tissue Using the Forced Vibration Method. American Society of Biomechanics, 24th Annual Meeting (1999)

    Google Scholar 

  11. Darvish, K.K., Crandall, J.R.: Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23(9), 633–645 (2001)

    Article  Google Scholar 

  12. Darvish, K.K., Takhounts, E.G., Crandall, J.R.: A dynamic method to develop nonlinear viscoelastic model of brain tissue. Advances in Bioengineering. In: Proceedings of the ASME International Mechanical Engineering Congress, vol. 39. Anaheim, California (1998)

    Google Scholar 

  13. Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng. Trans. ASME 119(4), 423–432 (1997)

    Article  Google Scholar 

  14. Franceschini, G., Bigoni, D., Regitnig, P., Holzapfel, G.A.: Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54(12), 2592–2620 (2006)

    Article  MATH  Google Scholar 

  15. Fung, Y.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)

    Google Scholar 

  16. Gurdjian, E.S., Lissner, H.R., Patrick, L.M.: Protection of the head and neck in sports. J. Am. Med. Assoc. 182, 502–512 (1962)

    Google Scholar 

  17. Horgan, T.J., Gilchrist, M.D.: The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8(3), 1–14 (2003)

    Google Scholar 

  18. Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43(5), 623–636 (2006)

    Google Scholar 

  19. Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: Characterisation of the mechanical behaviour of brain tissue in compression and shear. Biorheology 45, 663–676 (2008)

    Google Scholar 

  20. Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: The influence of test conditions on characterisation of the mechanical properties of brain tissue. J. Biomech. Eng. Trans. ASME 130(3), 031003 (2008)

    Google Scholar 

  21. Hrapko, M., van Dommelen. J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: On the consequences of non linear constitutive modelling of brain tissue for injury prediction with numerical head models. Int. J. Crashworthiness 14, 245–257 (2009)

    Article  Google Scholar 

  22. Iwata, A., Stys, P.K., Wolf, J.A., Chen, X.H., Taylor, A.G., Meaney, D.F., Smith, D.H.: Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J. Neurosci. 24(19), 4605–4613 (2004)

    Article  Google Scholar 

  23. Kleiven, S.: Evaluation of head injury criteria using a finite element model validation against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthiness 11(1), 65–79 (2006)

    Article  Google Scholar 

  24. Langlois, J.A., Rutland-Brown, W., Thomas, K.E.: Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Technical Report, Centers for Disease Control and Prevention, National Center for Injury Prevention and Control (2004)

    Google Scholar 

  25. Macosko, C.W.: Rheology: Principles, Measurements, and Applications. VCH Publishers, Berlin (1994)

    Google Scholar 

  26. Meaney, D.F.: Relationship between structural modeling and hyperelastic material behavior: application to cns white matter. Biomech. Model. Mechanobiol. 1, 279–293 (2003)

    Article  Google Scholar 

  27. Mendis, K.K., Stalnaker, R.L., Advani, S.H.: A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng. Trans. ASME 117(3), 279–285 (1995)

    Article  Google Scholar 

  28. Miller, K.: Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J. Biomech. 32(5), 531–537 (1999)

    Article  Google Scholar 

  29. Miller, K.: Biomechanics of soft tissues. Med. Sci. Monit. 6(1), 158–167 (2000)

    Google Scholar 

  30. Miller, K.: How to test very soft biological tissue in extension. J. Biomech. 34(5), 651–657 (2001)

    Article  Google Scholar 

  31. Miller, K., Chinzei, K.: Constitutive modeling of brain tissue: experiment and theory. J. Biomech. 30(11, 12), 1115–1121 (1997)

    Article  Google Scholar 

  32. Moerman, K., Herlaar, K.: Finite Element Modelling of the Human Head to Predict and Analyse Brain Injury due to Blast Induced Acceleration. Technical Report. TNO-DV2 2005 IN017, TNO Defense, Security and Safety, The Netherlands (2006)

    Google Scholar 

  33. Morrison, B. III., Cater, H.L., Wang, C.C.B., Thomas, F.C., Hung, C.T., Ateshian, G.A., Sundstrom, L.E.: A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47(SAE 2003-22-0006), 93–106 (2003)

    Google Scholar 

  34. Nahum, A.M., Smith, R.W., Ward, C.C.: Intracranial pressure dynamics during head impact. In: Proceedings of the 21st Stapp Car Crash Conference, SAE 770922, pp. 339–366 (1977)

    Google Scholar 

  35. Nicolle, S., Lounis, M., Willinger, R.: Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results. Stapp Car Crash J. 48(SAE 2004-22-0011), 239–258 (2004)

    Google Scholar 

  36. Nicolle, S., Lounis, M., Willinger, R., Palierne, J.F.: Shear linear behaviour of brain tissue over a large frequency range. Biorheology 42(3), 209–223 (2005)

    Google Scholar 

  37. Peters, G.W.M., Baaijens, F.: Modelling of non-isothermal viscoelastic flows. J. Non-Newt. Fluid Mech. 68(2, 3), 205–224 (1997)

    Article  Google Scholar 

  38. Peters, G.W.M., Meulman, J.H., Sauren, A.H.J.: The applicability of the time/temperature superposition principle to brain tissue. Biorheology 34(2), 127–138 (1997)

    Article  Google Scholar 

  39. Prange, M.T., Margulies, S.S.: Directional properties of gray and white brain tissue. In: Symp. Proc. Center for Disease Control, Wayne State University (1998)

    Google Scholar 

  40. Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. Trans. ASME 124(2), 244–252 (2002)

    Article  Google Scholar 

  41. Prange, M.T., Meaney, D.F., Margulies, S.S.: Defining brain mechanical properties: effects of region, direction, and species. In: Proceedings of the 44th Stapp Car Crash Conference, SAE 2000-01-SC15, pp. 205–213 (2000)

    Google Scholar 

  42. Ruan, J.S., Prasad, P. Head injury potential assessment in frontal impacts by mathematical modeling. In: Proceedings of the 38th Stapp Car Crash Conference SAE 942212, pp. 111–121 (1994)

    Google Scholar 

  43. Shen, F., Tay, T.E., Li, J.Z., Nigen, S., Lee, P.V.S., Chan, H.K.: Modified bilston nonlinear viscoelastic model for finite element head injury studies. J. Biomech. Eng. Trans. ASME 128(5), 797–801 (2006)

    Article  Google Scholar 

  44. Takhounts, E.G., Crandall, J.R., Matthews, B.T.: Shear properties of brain tissue using non-linear green-rivlin viscoelastic constitutive equation. In: Injury Biomechanics Research, Proceedings of the 27th International Workshop, pp. 141–156 (1999)

    Google Scholar 

  45. Takhounts, E.G., Crandall, J.R., Darvish, K.K.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47(SAE 2003-22-0005), 107–134 (2003)

    Google Scholar 

  46. Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5(1), 53–61 (2006)

    Article  Google Scholar 

  47. Versace, J.: A review of the severity index. In: Proceedings of the 15th Stapp Car Crash Conference, SAE 710881, pp. 771–796 (1971)

    Google Scholar 

  48. Willinger R, Baumgartner D (2003) Human head tolerance limits to specific injury mechanisms.Int. J. Crashworthiness 8, 605–617

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the European Integrated Project APROSYS and the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. W. van Dommelen .

Editor information

Editors and Affiliations

Appendix

Appendix

In Sect. 4, a constitutive model for brain tissue was presented. In this appendix, a numerical integration scheme for this model based on explicit integration of Eq. 36 is given. For each increment, the state of the material, resulting from a given deformation and the solution at the end of the previous increment, is obtained from the following procedure:

  1. 1.

    Compute the deformation \(\user2{F}(t)\) from the nodal displacements.

  2. 2.

    Compute

    $$\varvec{\sigma}^{\rm h}_{\rm e}(t) = K(J(t)-1)\user2{I}$$
  3. 3.

    Compute

    $$ \begin{aligned} \varvec{\sigma}_{\rm e}^{\rm d}(t) &= \frac{G_{\infty}}{\sqrt{I_{3}(t)}} \left[ (1 - A)\exp \left(-C\sqrt{b\tilde{I}_{1}(t) + (1-b)\tilde{I}_{2}(t) - 3}\right) + A \right]\\ & \quad \left[b\tilde{\user2{B}}^{\rm d}(t) - (1 - b) (\tilde{\user2{B}}^{-1}(t))^{\rm d} \right] \end{aligned}$$
  4. 4.
    1. a.

      Retrieve \(\user2{C}_{{\rm v}_i}(t-\Updelta t)\) and \(\dot{\user2{C}}_{{\rm v}_i}(t-\Updelta t)\) from the previous time increment for each mode i = 1 to N.

    2. b.

      For mode i = 1 to N, predict \(\user2{C}_{{\rm v}_i}(t)\), \(\user2{B}_{{\rm e}_i}(t)\), and \(\varvec{\sigma}_{{\rm ve}_i}^{\rm d}(t)\)

      $$\user2{C}_{{\rm v}_i}^{*}(t) = \user2{C}_{{\rm v}_i}(t-\Updelta t) + \dot{\user2{C}}_{{\rm v}_i}(t-\Updelta t)\Updelta t $$
      $$\user2{B}_{{\rm e}_i}^{*}(t) = \user2{F}(t)\cdot \user2{C}_{{\rm v}_i}^{*-1}(t) \cdot \user2{F}^{\rm T}(t) $$
      $$\varvec{\sigma}_{{\rm ve}_i}^{*{\rm d}}(t) = \frac{G_i}{\sqrt{I_{3}(t)}} \left[a\tilde{\user2{B}}_{{\rm e}_i}^{*{\rm d}}(t) - (1-a) (\tilde{\user2{B}}^{*-1}_{{\rm e}_i}(t))^{\rm d} \right] $$
    3. c.

      Predict \(\varvec{\sigma}^{\rm d}(t)\) and Ï„(t)

      $$\varvec{\sigma}^{*{\rm d}}(t) = \varvec{\sigma}_{{\rm e}}^{\rm d}(t) + \sum_{i=1}^{N}\varvec{\sigma}_{{\rm ve}_i}^{*{\rm d}}(t) $$
      $$\tau^{*}(t) = \sqrt{\frac{1}{2}\varvec{\sigma}^{*{\rm d}}(t):\varvec{\sigma}^{*{\rm d}}(t)} $$
    4. d.

      For mode i = 1 to N, predict η i (t), \(\user2{D}_{{\rm v}_i}(t)\), and \(\dot{\user2{C}}_{{\rm v}_i}(t)\)

      $$\eta^{*}_i(t) = \eta_{\infty_i} + \frac{\eta_{0_i} - \eta_{\infty_i}} {1 + \left(\frac {\tau^{*}(t)} {\tau_0}\right)^{(n_i-1)}} $$
      $$\user2{D}_{{\rm v}_i}^{*}(t) = \frac{\varvec{\sigma}_{{\rm ve}_i}^{*{\rm d}}(t)}{2\eta_i^{*}(t)} $$
      $$\dot{\user2{C}}_{{\rm v}_i}^{*}(t) = 2 \user2{F}^{\rm T}(t) \cdot \user2{B}_{{\rm e}_i}^{*-1}(t) \cdot \user2{D}_{{\rm v}_i}^{*}(t) \cdot \user2{F}(t) $$

      and determine

      $$\user2{C}_{{\rm v}_i}(t) = \user2{C}_{{\rm v}_i}(t-\Updelta t) + \frac{1}{2} \left(\dot{\user2{C}}_{{\rm v}_i}(t-\Updelta t) + \dot{\user2{C}}_{{\rm v}_i}^{*}(t)\right)\Updelta t $$
      $$\user2{B}_{{\rm e}_i}(t) = \user2{F}(t)\cdot \user2{C}_{{\rm v}_i}^{-1}(t) \cdot \user2{F}^{\rm T}(t) $$
      $$\varvec{\sigma}_{{\rm ve}_i}^{\rm d}(t) = \frac{G_i}{\sqrt{I_{3}(t)}} \left[a\tilde{\user2{B}}_{{\rm e}_i}^{\rm d}(t) - (1-a) (\tilde{\user2{B}}_{{\rm e}_i}^{-1}(t))^{\rm d} \right] $$

      and store \(\user2{C}_{{\rm v}_i}(t)\) for the next time increment.

    5. e.

      Determine

      $$\varvec{\sigma}^{\rm d}(t) = \varvec{\sigma}_{\rm e}^{\rm d}(t) + \sum_{i=1}^N\varvec{\sigma}_{{\rm ve}_i}^{\rm d}(t)$$
      $$\tau(t) = \sqrt{\frac{1}{2}\varvec{\sigma}^{\rm d}(t):\varvec{\sigma}^{\rm d}(t)} $$
    6. f.

      For mode i = 1 to N, determine

      $$\eta_i(t) = \eta_{\infty_i} + \frac{\eta_{0_i} - \eta_{\infty_i}} {1 + \left(\frac {\tau(t)} {\tau_0}\right)^{(n_i-1)}} $$
      $$\user2{D}_{{\rm v}_i}(t) = \frac{\varvec{\sigma}_{{\rm ve}_i}^{\rm d}(t)}{2\eta_i(t)} $$
      $$\dot{\user2{C}}_{{\rm v}_i}(t) = 2 \user2{F}^{\rm T}(t) \cdot \user2{B}_{{\rm e}_i}^{-1}(t) \cdot \user2{D}_{{\rm v}_i}(t) \cdot \user2{F}(t) $$

      and store \(\dot{\user2{C}}_{{\rm v}_i}(t)\) for the next time increment.

  5. 5.

    Compute

    $$\varvec{\sigma}(t) = \varvec{\sigma}_{\rm e}^{\rm h}(t) + \varvec{\sigma}^{\rm d}(t) $$

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Dommelen, J.A.W., Hrapko, M., Peters, G.W.M. (2010). Constitutive Modelling of Brain Tissue for Prediction of Traumatic Brain Injury. In: Bilston, L. (eds) Neural Tissue Biomechanics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_16

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13889-8

  • Online ISBN: 978-3-642-13890-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics