Skip to main content

Spinal Cord Mechanical Properties

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 3))

Abstract

Knowledge of the mechanical properties of the spinal cord is useful for understanding spinal cord injury mechanisms and thresholds and developing realistic spinal cord models (for example, computer models for spinal cord injury or surgical simulations). The response of the spinal cord to mechanical loading has been studied under tension and compressive indentation, and its’ behaviour has been shown to be non-linear viscoelastic. This chapter discusses testing modes that have been used to study spinal cord mechanical behaviour, presents a summary of reported mechanical properties of the spinal cord, including some mechanical testing data and constitutive model parameters, and discusses the effects of various specimen and experimental conditions on the mechanical behaviour of the spinal cord. Areas for future research and refinement of testing protocols are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bain, A.C., Raghupathi, R., Meaney, D.F.: Dynamic stretch correlates to both morphological abnormalities and electrophysiological impairment in a model of traumatic axonal injury. J. Neurotrauma 18, 499–511 (2001)

    Article  Google Scholar 

  2. Bilston, L.E., Liu, Z., Phan-Thien, N.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38, 335–345 (2001)

    Google Scholar 

  3. Bilston, L.E., Thibault, L.E.: The mechanical properties of the human cervical spinal cord in vitro. Ann. Biomed. Eng. 24, 67–74 (1996)

    Article  Google Scholar 

  4. Carlson, G.D., Warden, K.E., Barbeau, J.M. et al.: Viscoelastic relaxation and regional blood flow response to spinal cord compression and decompression. Spine 22, 1285–1291 (1997)

    Article  Google Scholar 

  5. Chang, G.L., Hung, T.K., Bleyaert, A., Jannetta, P.J.: Stress–strain measurement of the spinal cord of puppies and their neurological evaluation. J. Trauma 21, 807–810 (1981)

    Article  Google Scholar 

  6. Chang, G.L., Hung, T.K., Feng, W.W.: An in vivo measurement and analysis of viscoelastic properties of the spinal cord of cats. J. Biomech. Eng. 110, 115–122 (1988)

    Article  Google Scholar 

  7. Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40, 117–124 (2007)

    Article  Google Scholar 

  8. Cheng, S., Clarke, E.C., Bilston, L.E.: The effects of preconditioning strain on measured tissue properties. J. Biomech. 42, 1360–13602 (2009)

    Article  Google Scholar 

  9. Choo, A.M., Liu, J., Dvorak, M., Tetzlaff, W., Oxland, T.R.: Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp. Neurol. 212, 490–506 (2008)

    Article  Google Scholar 

  10. Choo, A.M., Liu, J., Lam, C.K., Dvorak, M., Tetzlaff, W., Oxland, T.R.: Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J. Neurosurg. 6, 255–266 (2007)

    Google Scholar 

  11. Clarke, E.C., Cheng, S., Bilston, L.E.: The mechanical properties of neonatal rat spinal cord in vitro, and comparisons with adult. J. Biomech. 42, 1397–1402 (2009)

    Article  Google Scholar 

  12. Clarke, E.C., Choo, A.M., Liu, J., et al.: Anterior fracture-dislocation is more severe than lateral: a biomechanical and neuropathological comparison in rat thoracolumbar spine. J. Neurotrauma 25, 371–383 (2008)

    Article  Google Scholar 

  13. Cox, M.A., Gawlitta, D., Driessen, N.J., Oomens, C.W., Baaijens, F.P.: The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation. Comp. Methods Biomech. Biomed. Eng. 11, 585–592 (2008)

    Article  Google Scholar 

  14. Fallenstein, G.T., Hulce, V.D., Melvin, J.W.: Dynamic mechanical properties of human brain tissue. J. Biomech. 2, 217–226 (1969)

    Article  Google Scholar 

  15. Fiford, R.J., Bilston, L.E.: The mechanical properties of rat spinal cord in vitro. J. Biomech. 38, 1509–1515 (2005)

    Article  Google Scholar 

  16. Green, M.A., Bilston, L.E., Sinkus, R.: In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21, 755–764 (2008)

    Article  Google Scholar 

  17. Hung, T.K., Chang, G.L.: Biomechanical and neurological response of the spinal cord of a puppy to uniaxial tension. J Biomech. Eng. 103, 43–47 (1981)

    Article  Google Scholar 

  18. Hung, T.K., Chang, G.L., Chang, J.L., Albin, M.S.: Stress–strain relationship and neurological sequelae of uniaxial elongation of the spinal cord of cats. Surg. Neurol. 15, 471– 476 (1981a)

    Article  Google Scholar 

  19. Hung, T.K., Chang, G.L., Lin, H.S., Walter, F.R., Bunegin, L.: Stress–strain relationship of the spinal cord of anesthetized cats. J. Biomech. 14, 269–276 (1981b)

    Article  Google Scholar 

  20. Hung, T.K., Lin, H.S., Bunegin, L., Albin, M.S.: Mechanical and neurological response of cat spinal cord under static loading. Surg. Neurol. 17, 213–217 (1982)

    Article  Google Scholar 

  21. Ichihara, K., Taguchi, T., Shimada, Y., Sakuramoto, I., Kawano, S., Kawai, S.: Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J. Neurotrauma. 18, 361–367 (2001)

    Article  Google Scholar 

  22. Kwon, B.K., Oxland, T.R., Tetzlaff, W.: Animal models used in spinal cord regeneration research. Spine 27, 1504–1510 (2002)

    Article  Google Scholar 

  23. Lei, F., Szeri, A.Z.: Inverse analysis of constitutive models: biological soft tissues. J. Biomech. 40, 936–940 (2007)

    Article  Google Scholar 

  24. Maikos, J.T., Elias, R.A., Shreiber, D.I.: Mechanical properties of dura mater from the rat brain and spinal cord. J. Neurotrauma 25, 38–51 (2008)

    Article  Google Scholar 

  25. Moerman, K.M., Holt, C.A., Evans, S.L., Simms, C.K.: Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo. J. Biomech. 42, 1150–1153 (2009)

    Article  Google Scholar 

  26. Oakland, R.J., Hall, R.M., Wilcox, R.K., Barton, D.C.: The biomechanical response of spinal cord tissue to uniaxial loading. Proc Inst Mech Eng [H]. 220, 489–492 (2006)

    Google Scholar 

  27. Ozawa, H., Matsumoto, T., Ohashi, T., Sato, M., Kokubun, S.: Comparison of spinal cord gray matter and white matter softness: measurement by pipette aspiration method. J. Neurosurg. 95, 221–224 (2001)

    Google Scholar 

  28. Shreiber, D.I., Hao, H., Elias, R.A.: Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech. Model. Mechanobiol. 8, 311–321 (2009)

    Article  Google Scholar 

  29. Tunturi, A.R.: Elasticity of the spinal cord, pia, and denticulate ligament in the dog. J Neurosurg. 48, 975–979 (1978)

    Article  Google Scholar 

  30. Tunturi, A.R.: Viscoelasticity of dog spinal cord. Physiol. Chem. Phys. 12, 373–378 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clarke, E.C. (2010). Spinal Cord Mechanical Properties. In: Bilston, L. (eds) Neural Tissue Biomechanics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_15

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13889-8

  • Online ISBN: 978-3-642-13890-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics