Skip to main content

Neural Tissue Biomechanics: Biomechanics and Models of Structural Neurological Disorders

  • Chapter
  • First Online:
Neural Tissue Biomechanics

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 3))

  • 1967 Accesses

Abstract

Research interests in biomechanical modeling of the intracranial system and structural neurological disorders have increased in the last two decades. The lack of clarity on the physiology of the intracranial system has resulted in some disparities in these models. The aim of this chapter is to provide a thorough physiological background of the intracranial system, the mechanics of several types of structural neurological disorders that arise when the system is disturbed and outline the benefits in modeling these disorders. This chapter concludes by discussing some of the impending issues that need to be resolved in order to improve our understanding of a diseased intracranial system using computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ateshian, G.A.: The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42(9), 1163–1176 (2009)

    Article  Google Scholar 

  2. Bering, E.A.: Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump. Am. Med. Assoc.: Arch. Neurol. Psychiatry 73(2), 165–172 (1955)

    Google Scholar 

  3. Berkouk, K., Carpenter, P.W., Lucey, A.D.: Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory. J. Biomech. Eng. 125(6), 852–856 (2003)

    Article  Google Scholar 

  4. Bertram, C.D., Brodbelt, A.R., Stoodley, M.A.: The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J. Biomech. Eng. 127(7), 1099–1109 (2005)

    Article  Google Scholar 

  5. Bilston, L.E., Fletcher, D.F., Brodbelt, A.R., et al. Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput. Methods Biomech. Biomed. Eng. 6(4), 235–241 (2003)

    Article  Google Scholar 

  6. Bilston, L.E., Fletcher, D.F., Stoodley, M.A.: Focal spinal arachnoiditis increases subarachnoid space pressure: a computational study. Clin. Biomech. (Bristol, Avon) 21(6), 579–584 (2006)

    Article  Google Scholar 

  7. Bloomfield, I.G., Johnston, I.H., Bilston, L.E.: Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 28(5), 246–251 (1998)

    Article  Google Scholar 

  8. Bradley, W., Whittemore, A., Kortman, K., et al. Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal pressure hydrocephalus. Radiology 178, 459–466 (1991)

    Google Scholar 

  9. Bradley, W.G., Kortman, K.E., Burgoyne, B.: Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology 159(3), 611–616 (1986)

    Google Scholar 

  10. Brodbelt, A.R., Stoodley, M.A., Watling, A.M., et al.: Altered subarachnoid space compliance and fluid flow in an animal model of posttraumatic syringomyelia. Spine 28(20), E413–E419 (2003)

    Article  Google Scholar 

  11. Carpenter, P.W., Berkouk, K., Lucey, A.D.: Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: Mechanisms for the pathogenesis of syringomyelia. J. Biomech. Eng. 125(6), 857–863 (2003)

    Article  Google Scholar 

  12. Cheng, S., Bilston, L.: Computational model of the cerebral ventricles in hydrocephalus. J. Biomech. Eng. 132(5), 054501 (2010)

    Google Scholar 

  13. Cheng, S., Jacobson, E., Bilston, L.E.: Models of the pulsatile hydrodynamics of cerebrospinal fluid flow in the normal and abnormal intracranial system. Comp. Methods Biomech. Biomed. Eng. 10(2), 151–157 (2007)

    Article  Google Scholar 

  14. Cheng, S., Tan, K., Bilston, L.E.: The effects of the interthalamic adhesion position on cerebrospinal fluid dynamics in the cerebral ventricles. J. Biomech. 43(3), 579–582 (2009)

    Article  Google Scholar 

  15. Cserr, H.F.: Convection of Brain Interstitial Fluid. Raven Press, New York (1984)

    Google Scholar 

  16. Dandy, W.E., Blackfan, K.D.: Internal hydrocephalus. An experimental, clinical and pathological study. Am. J. Dis. Child. 8, 406–481 (1914)

    Google Scholar 

  17. Davson, H., Segal, M.B.: Physiology of the CSF and Blood-Brain Barrier. CRC Press, Boca Raton (1996)

    Google Scholar 

  18. Di Rocco, C., Pettorossi, V.E., Caldarelli, M., et al.: Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp. Neurol. 59(1), 40–52 (1978)

    Article  Google Scholar 

  19. DuBoulay, G., O’Connell, J., Currie, J., et al.: Further investigations on pulsatile movements in the cerebrospinal fluid pathways. Acta Radiol.: Diagn. 13, 496–523 (1972)

    Google Scholar 

  20. Dutta-Roy, T., Wittek, A., Miller, K.: Biomechanical modeling of normal pressure hydrocephalus. J. Biomech. 41(10), 2263–2271 (2008)

    Article  Google Scholar 

  21. Enzmann, D.R., Pelc, N.J.: Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 178, 467–474 (1991)

    Google Scholar 

  22. Enzmann, D.R., Pelc, N.J.: Brain motion: measurement with phase-contrast MR imaging. Radiology 185, 653–660 (1992)

    Google Scholar 

  23. Feinberg, D.A., Mark, A.S.: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 163(3), 793–799 (1987)

    Google Scholar 

  24. Fin, L., Grebe, R.: Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius. Comp. Methods Biomech. Biomed. Eng. 6(3), 163–170 (2003)

    Article  Google Scholar 

  25. Friden, H.G., Ekstedt, J.: Volume/pressure relationship of the cerebrospinal space in humans. Neurosurgery 13(4), 351–366 (1983)

    Article  Google Scholar 

  26. Greitz, D.: Cerebrospinal fluid circulation and associated intracranial dynamics. A radiological investigation using MR imaging and radionuclide cisternography. Acta Radiol. Suppl. 386, 1–23 (1993)

    Google Scholar 

  27. Greitz, D.: Radiological assessment of hydrocephalus: new theories and implications of therapy. Neurosurg. Rev. 27(3), 145–165 (2004)

    Article  Google Scholar 

  28. Greitz, D., Hannerz, J.: A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. Am. J. Neuroradiol. 17(3), 431–438 (1996)

    Google Scholar 

  29. Greitz, D., Wirestam, R., Franck, A., et al.: Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 34(5), 370–380 (1992)

    Article  Google Scholar 

  30. Hakim, S., Adams, R.D.: The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure: observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci. 2, 307–327 (1965)

    Article  Google Scholar 

  31. Hakim, S., Venegas, J., Burton, J.: The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mathematical interpretations and mathematical models. Surg. Neurol. 5, 187–210 (1976)

    Google Scholar 

  32. Heiss, J.D., Patronas, N., DeVroom, H.L., et al.: Elucidating the pathophysiology of syringomyelia. J. Neurosurg. 91(4), 553–562 (1999)

    Article  Google Scholar 

  33. Howden, L., Giddings, D., Power, H., et al.: Three-dimensional cerebrospinal fluid flow within the human ventricular system. Comp. Methods Biomech. Biomed. Eng. 11(2), 123–133 (2008)

    Article  Google Scholar 

  34. Ishii, M., Suzuki, S., Julow, J.: Subarachnoid haemorrhage and communicating hydrocephalus. Scanning electron microscope observations. Acta Neurochir. (Wien) 50, 265–272 (1979)

    Article  Google Scholar 

  35. Jacobson, E.E., Fletcher, D.F., Morgan, M.K., et al.: Fluid dynamics of the cerebral aqueduct. Pediatr. Neurosurg. 24, 229–236 (1996)

    Article  Google Scholar 

  36. Jagdish, C., Hulme, A., Cooper, R.: Intracranial pressure in patients with dementia and communicating hydrocephalus. J. Neurosurg. 40, 376–380 (1974)

    Article  Google Scholar 

  37. Julow, J., Ishii, M., Iwabuchi, T.: Scanning electron microscope of subarachnoid macrophages and subarachnoid haemorrhage and their possible role in the formation of subarachnoid fibrosis. Acta Neurochir. (Wien) 50, 273–279 (1979)

    Article  Google Scholar 

  38. Kim, D.S., Choi, J.U., Huh, R., et al.: Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Childs Nerv. Syst. 15(9), 461–467 (1999)

    Article  Google Scholar 

  39. Klose, U., Strik, C., Kiefer, C., et al.: Detection of a relation between respiration and CSF pulsation with an echoplanar technique. J. Magn. Reson. Imaging 11(7), 438–444 (2000)

    Article  Google Scholar 

  40. Kurtcuoglu, V., Poulikakos, D., Ventikos, Y.: Computational modeling of the mechanical behavior of the cerebrospinal fluid system. J. Biomech. Eng. 127(2), 264–269 (2005)

    Article  Google Scholar 

  41. Kurtcuoglu, V., Soellinger, M., Summers, P., et al.: Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius. J. Biomech. 40(6), 1235–1245 (2007)

    Article  Google Scholar 

  42. Leech, P., Miller, J.D.: Intracranial volume-pressure relationships during experimental brain compression in primates. 1. Pressure response to changes in ventricular volume. J. Neurol. Neurosurg. Psychiatry 37, 1093–1098 (1974)

    Article  Google Scholar 

  43. Linninger, A.A., Tsakiris, C., Zhu, D.C., et al.: Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans. Biomed. Eng. 52(4), 557–565 (2005)

    Article  Google Scholar 

  44. Linninger, A.A., Xenos, M., Zhu, D.C., et al. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Eng. 54(2), 291–302 (2007)

    Article  Google Scholar 

  45. Lofgren, J., Essen, C.V., Zwetnow, N.: The pressure volume curve of the cerebrospinal fluid space in dogs. Acta Neurol. Scand. 49, 557–574 (1973)

    Article  Google Scholar 

  46. Milhorat, T.H.: Failure of choroid plexectomy as treatment of hydrocephalus. Surg. Gynecol. Obstet. 139, 505–508 (1974)

    Google Scholar 

  47. Milhorat, T.H., Hammock, M.K., Fenstermacher, J.D., et al.: Cerebrospinal fluid production by the choroid plexus and brain. Science 173(994), 330–332 (1971)

    Article  Google Scholar 

  48. Mow, V.C., Kuei, S.C., Lai, W.M., et al.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–83 (1980)

    Article  Google Scholar 

  49. Nagashima, T., Tamaki, N., Matsumoto, S., et al.: Biomechanics of hydrocephalus: a new theoretical model. Neurosurgery 21, 898–904 (1987)

    Article  Google Scholar 

  50. Naidich, T.P., Epstein, F., Lin, J.P., et al.: Evaluation of pediatric hydrocephalus by computed tomography. Radiology 119(2), 337–345 (1976)

    Google Scholar 

  51. Nilsson, C., Stahlberg, F., Thomsen, C., et al.: Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am. J. Physiol. 262, R20–R24 (1992)

    Google Scholar 

  52. O’Connell, J.E.: Cerebrospinal fluid mechanics. Proc. R. Soc. Med. 63(5), 507–518 (1970)

    Google Scholar 

  53. Oldfield, E.H., Muraszko, K., Shawker, T.H., et al.: Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J. Neurosurg. 80(1), 3–15 (1994)

    Article  Google Scholar 

  54. Patwardhan, R.V., Nanda, A.: Implanted ventricular shunts in the united states: the billion-dollar-a year cost of hydrocephalus treatment. Neurosurgery 56(1), 139–144 (2005)

    Google Scholar 

  55. Pena, A., Bolton, M.D., Whitehouse, H., et al.: Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery 45(1), 107–118 (1999)

    Article  Google Scholar 

  56. Penn, R.D., Bacus, J.W.: The brain as a sponge: a computed tomographic look at Hakim’s hypothesis. Neurosurgery 14(6), 670–675 (1984)

    Article  Google Scholar 

  57. Schroth, G., Klose, U.: Cerebrospinal fluid flow. I. Physiology of cardiac-related pulsation. Neuroradiology 35(1), 1–9 (1992)

    Article  Google Scholar 

  58. Sivaloganathan, S., Tenti, G., Drake, J.M.: Mathematical pressure-volume models of the cerebrospinal fluid. Appl. Math. Comput. 94, 243–266 (1998)

    Article  Google Scholar 

  59. Sklar, F.H., Diehl, J.T., Beyer, C.W.: Brain elasticity changes with ventriculomegaly. J. Neurosurg. 53, 173–179 (1980)

    Article  Google Scholar 

  60. Sklar, F.H., Elashvili, I.: The pressure-volume function of brain elasticity. Physiological considerations and clinical applications. J. Neurosurg. 47(5), 670–679 (1977)

    Article  Google Scholar 

  61. Stephensen, H., Tisell, M., Wikkelso, C.: There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50(4), 763–771 (2002)

    Article  Google Scholar 

  62. Struck, A.F., Haughton, V.M.: Idiopathic syringomyelia: phase-contrast MR of cerebrospinal fluid flow dynamics at level of foramen magnum. Radiology 253(1), 184–190 (2009)

    Article  Google Scholar 

  63. Taylor, Z., Miller, K.: Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37(8), 1263–1269 (2004)

    Google Scholar 

  64. Tenti, G., Drake, J.M., Sivaloganathan, S.: Brain biomechanics: mathematical modeling of hydrocephalus. Neurol. Res. 22(1), 19–24 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaokoon Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, S. (2010). Neural Tissue Biomechanics: Biomechanics and Models of Structural Neurological Disorders. In: Bilston, L. (eds) Neural Tissue Biomechanics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_14

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13889-8

  • Online ISBN: 978-3-642-13890-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics