Skip to main content

Revisiting Old Questions and New Approaches to Investigate the Fungal Cell Wall Construction

  • Chapter
  • First Online:
The Fungal Cell Wall

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 425))

Abstract

The beginning of our understanding of the cell wall construction came from the work of talented biochemists in the 70–80’s. Then came the era of sequencing. Paradoxically, the accumulation of fungal genomes complicated rather than solved the mystery of cell wall construction, by revealing the involvement of a much higher number of proteins than originally thought. The situation has become even more complicated since it is now recognized that the cell wall is an organelle whose composition continuously evolves with the changes in the environment or with the age of the fungal cell. The use of new and sophisticated technologies to observe cell wall construction at an almost atomic scale should improve our knowledge of the cell wall construction. This essay will present some of the major and still unresolved questions to understand the fungal cell wall biosynthesis and some of these exciting futurist approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aimanianda V, Simenel C, Garnaud C, Clavaud C, Tada R, Barbin L, Mouyna I, Heddergott C, Popolo L, Ohya Y et al (2017) The dual activity responsible for the elongation and branching of β-(1,3)-glucan in the fungal cell wall. MBio 8

    Google Scholar 

  • Akoumianaki T, Kyrmizi I, Valsecchi I, Gresnigt MS, Samonis G, Drakos E, Boumpas D, Muszkieta L, Prevost M-C, Kontoyiannis DP et al (2016) Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19:79–90

    CAS  PubMed  Google Scholar 

  • Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E, Latgé J-P (2011) Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol FG B 48:418–429

    CAS  PubMed  Google Scholar 

  • Atanasova M, Bagdonas H, Agirre J (2019) Structural glycobiology in the age of electron cryo-microscopy. Curr Opin Struct Biol 62:70–78

    PubMed  Google Scholar 

  • Bamford NC, Snarr BD, Gravelat FN, Little DJ, Lee MJ, Zacharias CA, Chabot JC, Geller AM, Baptista SD, Baker P et al (2015) Sph3 is a glycoside hydrolase required for the biosynthesis of galactosaminogalactan in Aspergillus fumigatus. J Biol Chem 290:27438–27450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK (2005) A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 4:1902–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartnicki-García S (1999) Glucans, walls, and morphogenesis: on the contributions of J. G. H. Wessels to the golden decades of fungal physiology and beyond. Fungal Genet Biol FG B 27:119–127

    PubMed  Google Scholar 

  • Bartnicki-Garcia S, Lippman E (1969) Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165:302–304

    CAS  PubMed  Google Scholar 

  • Bartnicki-Garcia S, Bracker CE, Gierz G, López-Franco R, Lu H (2000) Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophys J 79:2382–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baum LG, Cobb BA (2017) The direct and indirect effects of glycans on immune function. Glycobiology 27:619–624

    CAS  PubMed  Google Scholar 

  • Beaussart A, El-Kirat-Chatel S, Fontaine T, Latgé J-P, Dufrêne YF (2015) Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale 7:14996–15004

    CAS  PubMed  Google Scholar 

  • Beauvais A, Latgé J-P (2015) Aspergillus biofilm in vitro and in vivo. Microbiol Spectr 3

    Google Scholar 

  • Beauvais A, Fontaine T, Aimanianda V, Latgé J-P (2014) Aspergillus cell wall and biofilm. Mycopathologia 178:371–377

    PubMed  Google Scholar 

  • Blanco N, Reidy M, Arroyo J, Cabib E (2012) Crosslinks in the cell wall of budding yeast control morphogenesis at the mother-bud neck. J Cell Sci 125:5781–5789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13

    Google Scholar 

  • Cabib E, Farkas V, Kosík O, Blanco N, Arroyo J, McPhie P (2008) Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 283:29859–29872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chase WR, Zhaxybayeva O, Rocha J, Cosgrove DJ, Shapiro LR (2020) Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. New Phytol

    Google Scholar 

  • Christiansen L, Pathiraja D, Bech PK, Schultz-Johansen M, Hennessy R, Teze D, Choi I-G, Stougaard P (2020) A multifunctional polysaccharide utilization gene cluster in Colwellia echini encodes enzymes for the complete degradation of κ-Carrageenan, ι-Carrageenan, and Hybrid β/κ-Carrageenan. MSphere 5

    Google Scholar 

  • Christodoulidou A, Bouriotis V, Thireos G (1996) Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae. J Biol Chem 271:31420–31425

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2016) Catalysts of plant cell wall loosening. F1000Research 5

    Google Scholar 

  • Cui Y, Gao J, He Y, Jiang L (2020) Plant extracellular vesicles. Protoplasma 257:3–12

    CAS  PubMed  Google Scholar 

  • De Storme N, Geelen D (2014) Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci 5:138

    PubMed  PubMed Central  Google Scholar 

  • DeMeester KE, Liang H, Zhou J, Wodzanowski KA, Prather BL, Santiago CC, Grimes CL (2019) Metabolic incorporation of N-acetyl muramic acid probes into bacterial peptidoglycan. Curr Protoc Chem Biol 11:e74

    CAS  PubMed  Google Scholar 

  • Dichtl K, Samantaray S, Aimanianda V, Zhu Z, Prévost M-C, Latgé J-P, Ebel F, Wagener J (2015) Aspergillus fumigatus devoid of cell wall β-1,3-glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors. Mol Microbiol 95:458–471

    CAS  PubMed  Google Scholar 

  • Doering TL (2009) How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol 63:223–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K et al (1997) Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Kasper DL (2011) Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. Glycobiology 21:401–409

    CAS  PubMed  Google Scholar 

  • Duvenage L, Walker LA, Bojarczuk A, Johnston SA, MacCallum DM, Munro CA, Gourlay CW (2019) Inhibition of classical and alternative modes of respiration in Candida albicans leads to cell wall remodeling and increased macrophage recognition. MBio 10

    Google Scholar 

  • Elhasi T, Blomberg A (2019) Integrins in disguise—mechanosensors in Saccharomyces cerevisiae as functional integrin analogues. Microb. Cell Graz Austria 6:335–355

    CAS  Google Scholar 

  • Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54:213–223

    CAS  PubMed  Google Scholar 

  • Fang W, Sanz AB, Bartual SG, Wang B, Ferenbach AT, Farkaš V, Hurtado-Guerrero R, Arroyo J, van Aalten DMF (2019) Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases. Nat Commun 10:1669

    PubMed  PubMed Central  Google Scholar 

  • Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, Bozza S, Moretti S, Schwarz F, Trichot C et al (2011) Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog 7:e1002372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gastebois A, Fontaine T, Latgé J-P, Mouyna I (2010) beta(1-3)Glucanosyltransferase Gel4p is essential for Aspergillus fumigatus. Eukaryot Cell 9:1294–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gow NAR, Latge J-P, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol, Spectr, p 5

    Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F et al (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–704

    CAS  PubMed  Google Scholar 

  • Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM, Henriques R (2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7:12471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Moretto M, Weiss ML (2019) Encephalitozoon: tissue culture, cryopreservation, and murine infection. Curr Protoc Microbiol 52:e72

    PubMed  Google Scholar 

  • Hartland RP, Fontaine T, Debeaupuis JP, Simenel C, Delepierre M, Latgé JP (1996) A novel beta-(1-3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. J Biol Chem 271:26843–26849

    CAS  PubMed  Google Scholar 

  • Henry C, Latgé J-P, Beauvais A (2012) α1,3 glucans are dispensable in Aspergillus fumigatus. Eukaryot Cell 11:26–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry C, Li J, Danion F, Alcazar-Fuoli L, Mellado E, Beau R, Jouvion G, Latgé J-P, Fontaine T (2019) Two KTR mannosyltransferases are responsible for the biosynthesis of cell wall mannans and control polarized growth in Aspergillus fumigatus. MBio 10

    Google Scholar 

  • Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M, Fujii Y, Miyamoto C, Arisawa M, Furuichi Y, Watanabe T (1995) Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem 231:845–854

    CAS  PubMed  Google Scholar 

  • Kang MS, Elango N, Mattia E, Au-Young J, Robbins PW, Cabib E (1984) Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J Biol Chem 259:14966–14972

    CAS  PubMed  Google Scholar 

  • Kang X, Kirui A, Muszyński A, Widanage MCD, Chen A, Azadi P, Wang P, Mentink-Vigier F, Wang T (2018) Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat Commun 9:2747

    PubMed  PubMed Central  Google Scholar 

  • Katiyar S, Pfaller M, Edlind T (2006) Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother 50:2892–2894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagaki H, Wu H, Shimoi H, Ito K (2002) Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol Microbiol 46:1011–1022

    CAS  PubMed  Google Scholar 

  • Knogge W (1996) Fungal Infection of Plants. Plant Cell 8:1711–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kombrink A, Thomma BPHJ (2013) LysM effectors: secreted proteins supporting fungal life. PLoS Pathog 9:e1003769

    PubMed  PubMed Central  Google Scholar 

  • Kumar A, Zhang KYJ (2019) Human chitinases: structure, function, and inhibitor discovery. Adv Exp Med Biol 1142:221–251

    CAS  PubMed  Google Scholar 

  • Kuznetsov E, Váchová L, Palková Z (2016) Cellular localization of Sun4p and its interaction with proteins in the yeast birth scar. Cell Cycle Georget. Tex 15:1898–1907

    CAS  Google Scholar 

  • Latge J-P, Beauvais A (2014) Functional duality of the cell wall. Curr Opin Microbiol 20:111–117

    CAS  PubMed  Google Scholar 

  • Latgé J-P, Beauvais A, Chamilos G (2017) The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol 71:99–116

    PubMed  Google Scholar 

  • Lee MJ, Gravelat FN, Cerone RP, Baptista SD, Campoli PV, Choe S-I, Kravtsov I, Vinogradov E, Creuzenet C, Liu H et al (2014) Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J Biol Chem 289:1243–1256

    CAS  PubMed  Google Scholar 

  • Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, Gavino C, Baistrocchi SR, Ostapska H, Xiao T et al (2015) The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog 11:e1005187

    PubMed  PubMed Central  Google Scholar 

  • Lenardon MD, Milne SA, Mora-Montes HM, Kaffarnik FAR, Peck SC, Brown AJP, Munro CA, Gow NAR (2010) Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. J Cell Sci 123:2199–2206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9:509–518

    CAS  PubMed  Google Scholar 

  • Li J, Mouyna I, Henry C, Moyrand F, Malosse C, Chamot-Rooke J, Janbon G, Latgé J-P, Fontaine T (2018) Glycosylphosphatidylinositol anchors from galactomannan and GPI-anchored protein are synthesized by distinct pathways in Aspergillus fumigatus. J Fungi Basel Switz 4

    Google Scholar 

  • Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. Arab Book Am Soc Plant Biol 12

    Google Scholar 

  • Liu X, Li J, Zhao H, Liu B, Günther-Pomorski T, Chen S, Liesche J (2019) Novel tool to quantify cell wall porosity relates wall structure to cell growth and drug uptake. J Cell Biol 218:1408–1421

    PubMed  PubMed Central  Google Scholar 

  • Mansour MK, Tam JM, Khan NS, Seward M, Davids PJ, Puranam S, Sokolovska A, Sykes DB, Dagher Z, Becker C et al (2013) Dectin-1 activation controls maturation of β-1,3-glucan-containing phagosomes. J Biol Chem 288:16043–16054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Cuadrado AB, Encinar del Dedo J, de Medina-Redondo M, Fontaine T, del Rey F, Latgé JP, Vázquez de Aldana CR (2008) The Schizosaccharomyces pombe endo-1,3-beta-glucanase Eng1 contains a novel carbohydrate binding module required for septum localization. Mol Microbiol 69:188–200

    PubMed  Google Scholar 

  • Martínez-Rucobo FW, Eckhardt-Strelau L, Terwisscha van Scheltinga AC (2009) Yeast chitin synthase 2 activity is modulated by proteolysis and phosphorylation. Biochem J 417:547–554

    PubMed  Google Scholar 

  • Mélida H, Sain D, Stajich JE, Bulone V (2015) Deciphering the uniqueness of Mucoromycotina cell walls by combining biochemical and phylogenomic approaches. Environ Microbiol 17:1649–1662

    PubMed  Google Scholar 

  • Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, Muñoz-Barrios A, Pacios LF, Molina A (2018) Non-branched β-1,3-glucan oligosaccharides trigger immune responses in arabidopsis. Plant J Cell Mol Biol 93:34–49

    Google Scholar 

  • Millet N, Moya-Nilges M, Sachse M, Krijnse Locker J, Latgé J-P, Mouyna I (2019) Aspergillus fumigatus exoβ(1-3)glucanases family GH55 are essential for conidial cell wall morphogenesis. Cell Microbiol 21:e13102

    CAS  PubMed  Google Scholar 

  • Moore PM, Peberdy JF (1976) A particulate chitin synthase from Aspergillus flavus link: the properties, location, and levels of activity in mycelium and regenerating protoplast preparations. Can J Microbiol 22:915–921

    CAS  PubMed  Google Scholar 

  • Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latge JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

    CAS  PubMed  Google Scholar 

  • Mouyna I, Aimanianda V, Hartl L, Prevost M-C, Sismeiro O, Dillies M-A, Jagla B, Legendre R, Coppee J-Y, Latgé J-P (2016) GH16 and GH81 family β-(1,3)-glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis. Cell Microbiol 18:1285–1293

    CAS  PubMed  Google Scholar 

  • Mouyna I, Dellière S, Beauvais A, Gravelat F, Snarr B, Lehoux M, Zacharias C, Sun Y, de Jesus Carrion S, Pearlman E, Sheppard DC, Latgé J-P (2020) What are the functions of chitin Deacetylases in Aspergillus fumigatus? Front Cell Infect Microbiol 10:28. https://doi.org/10.3389/fcimb.2020.00028

  • Muraosa Y, Toyotome T, Yahiro M, Kamei K (2019) Characterisation of novel-cell-wall LysM-domain proteins LdpA and LdpB from the human pathogenic fungus Aspergillus fumigatus. Sci Rep 9:3345

    PubMed  PubMed Central  Google Scholar 

  • Muszkieta L, Aimanianda V, Mellado E, Gribaldo S, Alcàzar-Fuoli L, Szewczyk E, Prevost M-C, Latgé J-P (2014) Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell Microbiol 16:1784–1805

    CAS  PubMed  Google Scholar 

  • Muszkieta L, Fontaine T, Beau R, Mouyna I, Vogt MS, Trow J, Cormack BP, Essen L-O, Jouvion G, Latgé J-P (2019) The glycosylphosphatidylinositol-anchored DFG family is essential for the insertion of galactomannan into the β-(1,3)-glucan-chitin core of the cell wall of Aspergillus fumigatus. MSphere 4

    Google Scholar 

  • Nakamura T, Fahmi M, Tanaka J, Seki K, Kubota Y, Ito M (2019) Genome-wide analysis of whole human glycoside hydrolases by data-driven analysis in silico. Int J Mol, Sci, p 20

    Google Scholar 

  • Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 94:2101–2137

    PubMed  PubMed Central  Google Scholar 

  • Nikolaidis N, Doran N, Cosgrove DJ (2014) Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol 31:376–386

    CAS  PubMed  Google Scholar 

  • Onwubiko UN, Rich-Robinson J, Mustaf RA, Das ME (2020) Cdc42 promotes Bgs1 recruitment for septum synthesis and glucanase localization for cell separation during cytokinesis in fission yeast. Small GTPases

    Google Scholar 

  • Osmond BC, Specht CA, Robbins PW (1999) Chitin synthase III: synthetic lethal mutants and “stress related” chitin synthesis that bypasses the CSD3/CHS6 localization pathway. Proc Natl Acad Sci USA 96:11206–11210

    CAS  PubMed  Google Scholar 

  • Pacheco-Arjona JR, Ramirez-Prado JH (2014) Large-scale phylogenetic classification of fungal chitin synthases and identification of a putative cell-wall metabolism gene cluster in Aspergillus genomes. PLoS ONE 9:e104920

    PubMed  PubMed Central  Google Scholar 

  • Pan Y-J, Lin T-L, Chen C-T, Chen Y-Y, Hsieh P-F, Hsu C-R, Wu M-C, Wang J-T (2015) Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep 5:15573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pauly M, Gawenda N, Wagner C, Fischbach P, Ramírez V, Axmann IM, Voiniciuc C (2019) The suitability of orthogonal hosts to study plant cell wall biosynthesis. Plants Basel Switz 8

    Google Scholar 

  • Peberdy JF, Gibson RK (1971) Regeneration of Aspergillus nidulans protoplasts. J Gen Microbiol 69:325–330

    CAS  PubMed  Google Scholar 

  • Perez S, Tubiana T, Imberty A, Baaden M (2015) Three-dimensional representations of complex carbohydrates and polysaccharides–SweetUnityMol: a video game-based computer graphic software. Glycobiology 25:483–491

    CAS  PubMed  Google Scholar 

  • Pham TA, Berrin JG, Record E, To KA, Sigoillot J-C (2010) Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol 148:163–170

    CAS  PubMed  Google Scholar 

  • Pilhofer M, Rappl K, Eckl C, Bauer AP, Ludwig W, Schleifer K-H, Petroni G (2008) Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J Bacteriol 190:3192–3202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues ML, Casadevall A (2018) A two-way road: novel roles for fungal extracellular vesicles. Mol Microbiol 110:11–15

    CAS  PubMed  Google Scholar 

  • Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685–701

    CAS  PubMed  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496

    PubMed  PubMed Central  Google Scholar 

  • Sezgin E (2017) Super-resolution optical microscopy for studying membrane structure and dynamics. J Phys Condens Matter Inst Phys J 29:273001

    Google Scholar 

  • Simon C, Spriet C, Hawkins S, Lion C (2018) Visualizing lignification dynamics in plants with click chemistry: dual labeling is BLISS! J Vis Exp JoVE

    Google Scholar 

  • Spreghini E, Davis DA, Subaran R, Kim M, Mitchell AP (2003) Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot Cell 2:746–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • St Leger RJ, Screen SE, Shams-Pirzadeh B (2000) Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol 66:320–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stirke A, Celiesiute-Germaniene R, Zimkus A, Zurauskiene N, Simonis P, Dervinis A, Ramanavicius A, Balevicius S (2019) The link between yeast cell wall porosity and plasma membrane permeability after PEF treatment. Sci Rep 9:14731

    PubMed  PubMed Central  Google Scholar 

  • Stolz J, Munro S (2002) The components of the Saccharomyces cerevisiae mannosyltransferase complex M-Pol I have distinct functions in mannan synthesis. J Biol Chem 277:44801–44808

    CAS  PubMed  Google Scholar 

  • Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S et al (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–38

    CAS  PubMed  Google Scholar 

  • Upadhya R, Baker LG, Lam WC, Specht CA, Donlin MJ, Lodge JK (2018) Cryptococcus neoformans Cda1 and its chitin deacetylase activity are required for fungal pathogenesis. MBio 9

    Google Scholar 

  • Valsecchi I, Dupres V, Michel J-P, Duchateau M, Matondo M, Chamilos G, Saveanu C, Guijarro JI, Aimanianda V, Lafont F et al (2019) The puzzling construction of the conidial outer layer of Aspergillus fumigatus. Cell Microbiol 21:e12994

    PubMed  Google Scholar 

  • Velez CD, Lewis CJ, Kasper DL, Cobb BA (2009) Type I Streptococcus pneumoniae carbohydrate utilizes a nitric oxide and MHC II-dependent pathway for antigen presentation. Immunology 127:73–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker L, Sood P, Lenardon MD, Milne G, Olson J, Jensen G, Wolf J, Casadevall A, Adler-Moore J, Gow NAR (2018) The viscoelastic properties of the fungal cell wall allow traffic of AmBisome as intact liposome vesicles. MBio 9

    Google Scholar 

  • Wloka C, Bi E (2012) Mechanisms of cytokinesis in budding yeast. Cytoskelet. 69:710–726 (Hoboken NJ)

    Google Scholar 

  • Yu Q, Zhang B, Li J, Zhang B, Wang H, Li M (2016) Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans. Free Radic Biol Med 99:572–583

    CAS  PubMed  Google Scholar 

  • Zakrzewski A-C, Weigert A, Helm C, Adamski M, Adamska M, Bleidorn C, Raible F, Hausen H (2014) Early divergence, broad distribution, and high diversity of animal chitin synthases. Genome Biol Evol 6

    Google Scholar 

  • Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD et al (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333–01314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, Bernhardt J, Mitchell KF, Heiss C, Azadi P, Mitchell A et al (2018) Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol 16:e2006872

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Latgé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blatzer, M., Beauvais, A., Henrissat, B., Latgé, JP. (2020). Revisiting Old Questions and New Approaches to Investigate the Fungal Cell Wall Construction. In: Latgé, JP. (eds) The Fungal Cell Wall . Current Topics in Microbiology and Immunology, vol 425. Springer, Cham. https://doi.org/10.1007/82_2020_209

Download citation

Publish with us

Policies and ethics