Skip to main content

Exopolysaccharides and Biofilms

  • Chapter
  • First Online:
The Fungal Cell Wall

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 425))

Abstract

During infection, many fungal pathogens form biofilms within tissues or on biomedical devices. The growth of fungi within biofilms increases dramatically their resistance to both immune defences and antifungal therapies. In the last twenty years, studies have begun to shed light on many of the steps involved in biofilm synthesis and composition, revealing new antifungal strategies. This chapter will focus on the biofilm exopolysaccharides produced by A. fumigatus and C. albicans, the two main causes of human fungal infections. We will review the current state of our understanding of the structure, biosynthesis, and role of exopolysaccharides in biofilm development and function with a view to identifying future strategies for prophylaxis and treatment of these devastating infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Azeem AM, Salem FM, Abdel-Azeem MA, Nafady NA, Mohesien MT, Soliman EA (2016) Biodiversity of the Genus Aspergillus in different habitats. In: New and future developments in microbial biotechnology and bioengineering

    Google Scholar 

  • Afroz S, El-Ganiny AM, Sanders DA, Kaminskyj SG (2011) Roles of the Aspergillus nidulans UDP-galactofuranose transporter, UgtA in hyphal morphogenesis, cell wall architecture, conidiation, and drug sensitivity. Fungal Genet Biol 48:896–903

    Article  CAS  PubMed  Google Scholar 

  • Al-Gabr HM, Zheng T, Yu X (2013) Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination. Sci Total Environ 463–464:525–529

    Article  PubMed  CAS  Google Scholar 

  • Araujo D, Henriques M, Silva S (2017) Portrait of Candida species biofilm regulatory network genes. Trends Microbiol 25:62–75

    Article  CAS  PubMed  Google Scholar 

  • Anne B, Frank-Michael M (2009) Biofilm formation in Aspergillus fumigatus. In: Aspergillus fumigatus and Aspergillosis. American Society of Microbiology

    Google Scholar 

  • Araujo GR, Fontes GN, Leao D, Rocha GM, Pontes B, Sant’Anna C, de Souza W, Frases S (2016) Cryptococcus neoformans capsular polysaccharides form branched and complex filamentous networks viewed by high-resolution microscopy. J Struct Biol 193:75–82

    Article  PubMed  CAS  Google Scholar 

  • Arentshorst M, de Lange D, Park J, Lagendijk EL, Alazi E, van den Hondel CA, Ram AF (2019) Functional analysis of three putative galactofuranosyltransferases with redundant functions in galactofuranosylation in Aspergillus niger. Arch Microbiol

    Google Scholar 

  • Badiee P, Hashemizadeh Z (2014) Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J Med Res 139:195

    PubMed  PubMed Central  Google Scholar 

  • Bamford NC, Le Mauff F, Subramanian AS, Yip P, Millán C, Zhang Y, Zacharias C, Forman A, Nitz M, Codée JD, Usón I. (2019) Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1, 4-galactosaminidase that disrupts microbial biofilms. J Biol Chem

    Google Scholar 

  • Bamford NC, Snarr BD, Gravelat FN, Little DJ, Lee MJ, Zacharias CA, Chabot JC, Geller AM, Baptista SD, Baker P (2015) Sph3 is a glycoside hydrolase required for the biosynthesis of galactosaminogalactan in Aspergillus fumigatus. J Biol Chem 290:27438–27450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardalaye PC, Nordin JH (1976) Galactosaminogalactan from cell walls of Aspergillus niger. J Bacteriol 125:655–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Ann Rev Microbiol 22:87–108

    Article  CAS  Google Scholar 

  • Bartnicki-Garcia S, Lindberg B (1972) Partial characterization of mucoran: the glucuronomannan component. Carbohyd Res 23:75–85

    Article  CAS  Google Scholar 

  • Beaussart A, El-Kirat-chatel S, Fontaine T, Latgé J-P, Dufrêne YFJN (2015) Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale 7:14996–15004

    Article  CAS  PubMed  Google Scholar 

  • Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA, Romani L, Latge JP (2013) Deletion of the alpha-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 9:e1003716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beauvais A, Latgé JP (2015) Aspergillus biofilm in vitro and in vivo. 3

    Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Boisvert A-A, Cheng MP, Sheppard DC, Nguyen DJAOTATS (2016) Microbial biofilms in pulmonary and critical care diseases. Ann Am Thorac Soci 13:1615–1623

    Article  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci 101:16630–16635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borghi E, Borgo F, Morace G (2016) Fungal biofilms: update on resistance. Adv Exp Med Biol 931:37–47

    Article  PubMed  Google Scholar 

  • Bratton EW, el Husseini N, Chastain CA, Lee MS, Poole C, Sturmer T, Juliano JJ, Weber DJ, Perfect JR (2012) Comparison and temporal trends of three groups with cryptococcosis: HIV-infected, solid organ transplant, and HIV-negative/non-transplant. PLoS ONE 7:e43582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briard B, Muszkieta L, Latgé J-P, Fontaine T (2016) Galactosaminogalactan of Aspergillus fumigatus, a bioactive fungal polymer. Mycologia 108:572–580

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv13–165rv13

    Google Scholar 

  • Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC (2009) Efflux-mediated antifungal drug resistance Clin Microbiol Rev 22:291–321. Table of Contents

    Google Scholar 

  • Casadevall A, Coelho C, Cordero RJ, Dragotakes Q, Jung E, Vij R, Wear MP (2019) The capsule of Cryptococcus neoformans. Virulence 1–10

    Google Scholar 

  • Casadevall A, Pirofski LA (2018) A therapeutic vaccine for recurrent vulvovaginal candidiasis. Oxford University Press, USA

    Google Scholar 

  • Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges, and promising strategies. Front Med (Lausanne) 5:28

    Article  Google Scholar 

  • Cerca N, Jefferson KK, Maira-Litrán T, Pier DB, Kelly-Quintos C, Goldmann DA, Azeredo J, Pier GB (2007) Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal poly-N-acetyl-β-(1-6)-glucosamine. Infection Immun 75:3406–3413

    Article  CAS  Google Scholar 

  • Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L (2016) Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie Van Leeuwenhoek 109:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Ceresa C, Tessarolo F, Caola I, Nollo G, Cavallo M, Rinaldi M, Fracchia L (2015) Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol 118:1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Chang W-C, Tzao C, Hsu H-H, Lee S-C, Huang K-L, Tung H-J, Chen C-Y (2006) Pulmonary cryptococcosis: comparison of clinical and radiographic characteristics in immunocompetent and immunocompromised patients. Chest 129:333–340

    Article  PubMed  Google Scholar 

  • Chen J, Varma A, Diaz MR, Litvintseva AP, Wollenberg KK, Kwon-Chung KJ (2008) Cryptococcus neoformans strains and infection in apparently immunocompetent patients China. Emerg Infect Dis 14:755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherniak R, Valafar H, Morris LC, Valafar F (1998) Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronoxylomannans with a computer-simulated artificial neural network. 5:146–159

    Google Scholar 

  • Costachel C, Coddeville B, Latge JP, Fontaine T (2005) Glycosylphosphatidylinositol-anchored fungal polysaccharide in Aspergillus fumigatus. J Biol Chem 280:39835–39842

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  PubMed  Google Scholar 

  • Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8:197–206

    Article  CAS  PubMed  Google Scholar 

  • Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 22:447–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danion F, Aguilar C, Catherinot E, Alanio A, DeWolf S, Lortholary O, Lanternier F (2015). Mucormycosis: new developments into a persistently devastating infection. In: Seminars in respiratory and critical care medicine. Thieme Medical Publishers, pp 692–705

    Google Scholar 

  • Davis LE, Cook G, Costerton JW (2002) Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376

    Article  PubMed  PubMed Central  Google Scholar 

  • Denega I, D’Enfert C, Bachellier-Bassi S (2019) Candida albicans biofilms are generally devoid of persister cells. Antimicrob Agents Chemother 63:e01979–e02018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denham ST, Verma S, Reynolds RC, Worne CL, Daugherty JM, Lane TE, Brown JC (2018) Regulated release of cryptococcal polysaccharide drives virulence and suppresses immune cell infiltration into the central nervous system. Infect Immun 86

    Google Scholar 

  • Denning D (2001) Chronic forms of pulmonary aspergillosis. Clin Microbiol Infect 7:25–31

    Article  PubMed  Google Scholar 

  • Denning DW, Hope WW (2010) Therapy for fungal diseases: opportunities and priorities. Trends Microbiol 18:195–204

    Article  CAS  PubMed  Google Scholar 

  • Desai JV, Mitchell AP, Andes DR (2014) Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 4

    Google Scholar 

  • di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D’Antonio D, Piccolomini R (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50:3269–3276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dichtl K, Samantaray S, Aimanianda V, Zhu Z, Prevost MC, Latge JP, Ebel F, Wagener J (2015) Aspergillus fumigatus devoid of cell wall beta-1,3-glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors. Mol Microbiol 95:458–471

    Article  CAS  PubMed  Google Scholar 

  • Difrancesco BR, Morrison ZA, Nitz M (2018) Monosaccharide inhibitors targeting carbohydrate esterase family 4 de-N-acetylases. Bioorg Med Chem 26:5631–5643

    Article  CAS  PubMed  Google Scholar 

  • Distler JJ, Roseman S (1960) Galactosamine polymers produced by Aspergillus parasiticus. J Biol Chem 235:2538–2541

    Article  CAS  PubMed  Google Scholar 

  • Doering TL (2009) How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Ann Rev Microbiol 63:223–247

    Article  CAS  Google Scholar 

  • Dolatabadi S, de Hoog GS, Meis JF, Walther G (2014) Species boundaries and nomenclature of Rhizopus arrhizus (syn. R. oryzae). Mycoses 57:108–127

    Google Scholar 

  • Dominguez E, Zarnowski R, Sanchez H, Covelli AS, Westler WM, Azadi P, Nett J, Mitchell AP, Andes DR (2018) Conservation and divergence in the Candida species biofilm matrix mannan-glucan complex structure, function, and genetic control. MBio 9

    Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond RA, Brown GD (2011) The role of Dectin-1 in the host defence against fungal infections. Current Opin Microbiol 14:392–399

    Article  CAS  Google Scholar 

  • Edwards JE Jr, Schwartz MM, Schmidt CS, Sobel JD, Nyirjesy P, Schodel F, Marchus E, Lizakowski M, DeMontigny EA, Hoeg J, Holmberg T (2018) A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis—a phase 2 randomized, double-blind, placebo-controlled trial. Clin Infect Dis 66(12):1928–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisinger F, Patzelt J, Langer HF (2018) The platelet response to tissue injury. Front Med (Lausanne) 5:317

    Article  Google Scholar 

  • El-Ganiny AM, Sheoran I, Sanders DAR, Kaminskyj SGW (2010) Aspergillus nidulans UDP-glucose-4-epimerase UgeA has multiple roles in wall architecture, hyphal morphogenesis, and asexual development. Fungal Genet Biol 47:629–635

    Article  CAS  PubMed  Google Scholar 

  • Ene IV, Walker LA, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ (2015) Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. MBio 6:e00986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel J, Schmalhorst PS, Dork-Bousset T, Ferrieres V, Routier FH (2009) A single UDP-galactofuranose transporter is required for galactofuranosylation in Aspergillus fumigatus. J Biol Chem 284:33859–33868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel J, Schmalhorst PS, Routier FH (2012) Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose. J Biol Chem 287:44418–44424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farr DR, Schuller-Hovanessian A, Horisberger M (1977) Structure of an α-D-galactosaminoglycan from Physarum polycephalum Spherule walls. Carbohyd Res 59:151–154

    Article  CAS  Google Scholar 

  • Fesel PH, Zuccaro A (2016) beta-glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 90:53–60

    Article  CAS  PubMed  Google Scholar 

  • Fidel PL, Cutler JE (2011) Prospects for development of a vaccine to prevent and control vaginal candidiasis. Current infectious disease reports 13:102–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Ridgway H (2009) Biofilm control: conventional and alternative approaches. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and industrial biofouling. Springer, Berlin, Heidelberg

    Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Fontaine T, Beauvais A, Loussert C, Thevenard B, Fulgsang CC, Ohno N, Clavaud C, Prevost MC, Latge JP (2010) Cell wall alpha1-3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genet Biol 47:707–712

    Article  CAS  PubMed  Google Scholar 

  • Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, Bozza S, Moretti S, Schwarz F, Trichot C (2011) Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog 7:e1002372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latgé J-P (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607

    Article  CAS  PubMed  Google Scholar 

  • Fred EB (1933) Antony van Leeuwenhoek: on the three-hundredth anniversary of his birth. J Bacteriol 25(1):iv-2

    Google Scholar 

  • Goffeau A (2008) Drug resistance: the fight against fungi. Nature 452:541

    Article  CAS  PubMed  Google Scholar 

  • Gorin PA, Eveleigh D (1970) Extracellular 2-acetamido-2-deoxy-D-galacto-D-galactan from Aspergillus nidulans. Biochemistry 9:5023–5027

    Article  CAS  PubMed  Google Scholar 

  • Graus MS, Wester MJ, Lowman DW, Williams DL, Kruppa MD, Martinez CM, Young JM, Pappas HC, Lidke KA, Neumann AK (2018) Mannan molecular substructures control nanoscale glucan exposure in Candida. Cell Rep 24(2432–2442):e5

    Google Scholar 

  • Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, Xu W, Kravtsov I, Hoareau CM, Vanier G (2013) Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog 9:e1003575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravelat FN, Ejzykowicz DE, Chiang LY, Chabot JC, Urb M, Macdonald KD, Al-Bader N, Filler SG, Sheppard DC (2010) Aspergillus fumigatus MedA governs adherence, host cell interactions and virulence. Cell Microbiol 12:473–488

    Article  CAS  PubMed  Google Scholar 

  • Gresnigt MS, Bozza S, Becker KL, Joosten LA, Abdollahi-Roodsaz S, van der Berg WB, Dinarello CA, Netea MG, Fontaine T, De Luca A, Moretti S (2014) A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist. 10:e1003936

    Google Scholar 

  • Guerrero C, Prieto A, Leal JA (1988) Extracellular galactosaminogalactan from Penicillium frequentans. Microbiologia (Madrid, Spain) 4:39–46

    CAS  Google Scholar 

  • Gugnani HC (2003) Ecology and taxonomy of pathogenic aspergilli. Frontiers Biosci 8:s346–s357

    Article  CAS  Google Scholar 

  • Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18:310–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Correa M, Ludena Y, Ramage G, Villena GK (2012) Recent advances on filamentous fungal biofilms for industrial uses. Appl Biochem Biotechnol 167:1235–1253

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley PJNRM (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Wang N, Yao G, Mu C, Wang Y, Sang J (2019) Blocking beta-1,6-glucan synthesis by deleting KRE6 and SKN1 attenuates the virulence of Candida albicans. Mol Microbiol 111:604–620

    Article  CAS  PubMed  Google Scholar 

  • Harding MW, Marques LL, Howard RJ, Olson ME (2009) Can filamentous fungi form biofilms? Trends Microbiol 17:475–480

    Article  CAS  PubMed  Google Scholar 

  • Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62:915–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Li S, Kaminskyj SGW (2018) Overexpression of Aspergillus nidulans alpha-1,3-glucan synthase increases cellular adhesion and causes cell wall defects. Med Mycol 56:645–648

    Article  CAS  PubMed  Google Scholar 

  • Henry C, Latgé J-P, Beauvais A (2012) α1, 3 glucans are dispensable in Aspergillus fumigatus. Eukaryot Cell 11:26–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry C, Li J, Danion F, Alcazar-Fuoli L, Mellado E, Beau R, Jouvion G, Latgé J-P, Fontaine T (2019) Two KTR Mannosyltransferases are responsible for the biosynthesis of cell wall mannans and control polarized growth in Aspergillus fumigatus. MBio 10:e02647–e02718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, Meisner J, Beveridge TJ, Preston JF, Romeo T (2008) Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-β-1, 6-N-acetyl-d-glucosamine. J Bacteriol 190:3670–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav A, Karuppayil SM (2017) Candida Albicans biofilm as a clinical challenge. In: Developments in fungal biology and applied mycology

    Google Scholar 

  • Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, Manuel R, Brown CS (2018) Candida auris: a review of the literature. Clin Microbiol Rev 31

    Google Scholar 

  • Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS, Sadovskaya I, Secor PR, Tseng BS, Scian M, Filloux A (2015) Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci 112:11353–11358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CJ, Cabezas-Olcoz J, Kernien JF, Wang SX, Beebe DJ, Huttenlocher A, Ansari H, Nett JE (2016) The extracellular matrix of Candida albicans biofilms impairs formation of neutrophil extracellular traps. PLOS Pathogens 12

    Google Scholar 

  • Katafuchi Y, Li Q, Tanaka Y, Shinozuka S, Kawamitsu Y, Izumi M, Ekino K, Mizuki K, Takegawa K, Shibata N, Goto M, Nomura Y, Ohta K, Oka T (2017) GfsA is a beta1,5-galactofuranosyltransferase involved in the biosynthesis of the galactofuran side chain of fungal-type galactomannan in Aspergillus fumigatus. Glycobiology 27:568–581

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Singh S (2014) Biofilm formation by Aspergillus fumigatus. Med Mycol 52:2–9

    CAS  PubMed  Google Scholar 

  • Kernien JF, Snarr BD, Sheppard DC, Nett JE (2017) The interface between fungal biofilms and innate immunity. Frontiers Immunology 8:1968

    Article  CAS  Google Scholar 

  • Komachi Y, Hatakeyama S, Motomatsu H, Futagami T, Kizjakina K, Sobrado P, Ekino K, Takegawa K, Goto M, Nomura Y, Oka T (2013) GfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus. Mol Microbiol 90:1054–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köseoğlu VK, Heiss C, Azadi P, Topchiy E, Güvener ZT, Lehmann TE, Miller KW, Gomelsky M (2015) Listeria monocytogenes exopolysaccharide: origin, structure, biosynthetic machinery and c-di-GMP-dependent regulation. Mol Microbiol 96:728–743

    Article  PubMed  CAS  Google Scholar 

  • Kudoh A, Okawa Y, Shibata N (2015) Significant structural change in both O- and N-linked carbohydrate moieties of the antigenic galactomannan from Aspergillus fumigatus grown under different culture conditions. Glycobiology 25:74–87

    Article  CAS  PubMed  Google Scholar 

  • Lafleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50:3839–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laforce-Nesbitt SS, Sullivan MA, Hoyer LL, Bliss JM (2008) Inhibition of Candida albicans adhesion by recombinant human antibody single-chain variable fragment specific for Als3p. FEMS Immunol Med Microbiol 54:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagree K, Mitchell AP (2017) Fungal biofilms: inside out. Microbiol Spectr 5

    Google Scholar 

  • Lamarre C, Beau R, Balloy V, Fontaine T, Hoi JWS, Guadagnini S, Berkova N, Chignard M, Beauvais A, Latgé JP (2009) Galactofuranose attenuates cellular adhesion of Aspergillus fumigatus. Cell Microbiol 11(11):1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Latgé J-P (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Latgé J-P (2001) The pathobiology of Aspergillus fumigatus. Trends Microbiol 9:382–389

    Article  PubMed  Google Scholar 

  • Latge J-P, Kobayashi H, Debeaupuis J-P, Diaquin M, Sarfati J, Wieruszeski J-M, Parra E, Bouchara J-P, Fournet BJI (1994) Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun 62:5424–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latge JP, Beauvais A (2014) Functional duality of the cell wall. Curr Opin Microbiol 20:111–117

    Article  CAS  PubMed  Google Scholar 

  • Latge JP, Beauvais A, Chamilos G (2017) The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol 71:99–116

    Article  CAS  PubMed  Google Scholar 

  • Le Mauff F, Bamford NC, Alnabelseya N, Zhang Y, Baker P, Robinson H, Codée JD, Howell PL, Sheppard DC (2019) Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases. J Biol Chem JBC RA119:008511

    Google Scholar 

  • Leal J, Ruperez P (1978) Extracellular polysaccharide production by Aspergillus nidulans. Tran British Mycological Soc 70:115–120

    Article  CAS  Google Scholar 

  • Lee M, Gravelat F, Sheppard D (2012) Galactosaminogalactan biosynthesis correlates with reported virulence in Aspergillus species. Mycoses 55

    Google Scholar 

  • Lee MJ, Geller AM, Bamford NC, Liu H, Gravelat FN, Snarr BD, le Mauff F, Chabot J, Ralph B, Ostapska H (2016) Deacetylation of fungal exopolysaccharide mediates adhesion and biofilm formation. MBio 7:e00252–e00316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Gravelat FN, Cerone RP, Baptista SD, Campoli PV, Choe SI, Kravtsov I, Vinogradov E, Creuzenet C, Liu H, Berghuis AM, Latge JP, Filler SG, Fontaine T, Sheppard DC (2014) Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J Biol Chem 289:1243–1256

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, Gavino C, Baistrocchi SR, Ostapska H, Xiao T, Ralph B (2015) The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog 11(10):e1005187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Mouyna I, Henry C, Moyrand F, Malosse C, Chamot-Rooke J, Janbon G, Latgé JP, Fontaine T (2018) Glycosylphosphatidylinositol anchors from galactomannan and GPI-anchored protein are synthesized by distinct pathways in Aspergillus fumigatus. J Fungi (Basel) 4

    Google Scholar 

  • Li P, Seneviratne CJ, Alpi E, Vizcaino JA, Jin L (2015) Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters. Antimicrob Agents Chemother 59:6101–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CJ, Hou YH, Chen YL (2019) The histone acetyltransferase GcnE regulates condition and biofilm formation in Aspergillus fumigatus

    Google Scholar 

  • Lin CJ, Sasse C, Gerke J, Valerius O, Irmer H, Frauendorf H, Heinekamp T, Strassburger M, Tran VT, Herzog B, Braus-Stromeyer SA, Braus GH (2015) Transcription factor SomA is required for adhesion, development and virulence of the human pathogen Aspergillus fumigatus. PLoS Pathog 11:e1005205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Little DJ, Milek S, Bamford NC, Ganguly T, Difrancesco BR, Nitz M, Deora R, Howell PL (2015) The protein BpsB is a poly-β-1, 6-N-acetyl-d-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica. J Biol Chem 290:22827–22840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B, Kauffmann-Lacroix C, Latgé JP, Beauvais A (2010) In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 12:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mah T-FC, O’Toole GAJTIM (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Martinez LR, Casadevall A (2005) Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect Immun 73:6350–6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez LR, Casadevall A (2015) Biofilm formation by Cryptococcus neoformans. Microbiol Spectr 3

    Google Scholar 

  • Martins M, Henriques M, Lopez-Ribot JL, Oliveira R (2012) Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55:80–85

    Article  CAS  PubMed  Google Scholar 

  • Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R (2010) Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169:323–331

    Article  CAS  PubMed  Google Scholar 

  • McClelland EE, Bernhardt P, Casadevall AJI (2006) Estimating the relative contributions of virulence factors for pathogenic microbes. Infect Immu 74:1500–1504

    Article  CAS  Google Scholar 

  • Mélida H, Sain D, Stajich JE, Bulone VJEM (2015) Deciphering the uniqueness of Mucoromycotina cell walls by combining biochemical and phylogenomic approaches. Environ Microbiol 17:1649–1662

    Article  PubMed  CAS  Google Scholar 

  • Mitchell K, Taff H, Cuevas M, Reinicke E, Sanchez H, Andes D (2013) Role of matrix β-1, 3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicro Agents Chem 57:1918–1920

    Article  CAS  Google Scholar 

  • Mitchell KF, Zarnowski R, Andes DR (2016) The extracellular matrix of fungal biofilms. Adv Exp Med Biol 931:21–35

    Article  PubMed  Google Scholar 

  • Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL, Nett JE, Mitchell AP, Andes DR (2015) Community participation in biofilm matrix assembly and function. Proc Natl Acad Sci USA 112:4092–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki T, Hayashi O, Ohshima Y, Yadomae T (1979) Studies on fungal polysaccharides: the immunological determinant of the serologically active substances from Absidia cylindrospora, Mucor hiemalis and Rhizopus nigricans. Microbiology 111:417–422

    CAS  Google Scholar 

  • Miyazawa K, Yoshimi A, Sano M, Tabata F, Sugahara A, Kasahara S, Koizumi A, Yano S, Nakajima T, Abe K (2019) Both galactosaminogalactan and α-1, 3-glucan contribute to aggregation of Aspergillus oryzae hyphae in liquid culture. 589408

    Google Scholar 

  • Modrzewska B, Kurnatowski P (2015) Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitolo 61

    Google Scholar 

  • Mora-Montes HM, Bates S, Netea MG, Castillo L, Brand A, Buurman ET, Díaz-Jiménez DF, Kullberg BJ, Brown AJ, Odds FC, Gow NA (2010) A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions. J Biol Chem 285(16):12087–12095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA (2013) Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4:e00526–e00612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan J, Wannemuehler K, Marr K, Hadley S, Kontoyiannis D, Walsh T, Fridkin S, Pappas P, Warnock D (2005) Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med Mycol 43:S49–S58

    Article  PubMed  Google Scholar 

  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller F-MC (2014) Biofilm formation and its impact on antifungal therapy. Curr Fungal Infect Rep 8:235–241

    Article  Google Scholar 

  • Müller F-MC, Seidler M, Beauvais A (2011) Aspergillus fumigatus biofilms in the clinical setting. Med Mycol 49:S96–S100

    Article  PubMed  Google Scholar 

  • Muszkieta L, Beauvais A, Pähtz V, Gibbons JG, Anton Leberre V, Beau R, Shibuya K, Rokas A, Francois JM, Kniemeyyer O, Brakhage AA (2013) Investigation of Aspergillus fumigatus biofilm formation by various “omics” approaches. Frontiers Microbiol 4:13

    Article  Google Scholar 

  • Muszkieta L, Fontaine T, Beau R, Mouyna I, Vogt MS, Trow J, Cormack BP, Essen LO, Jouvion G, Latgé JP (2019) The Glycosylphosphatidylinositol-anchored DFG family is essential for the insertion of galactomannan into the β-(1, 3)-glucan–chitin core of the cell wall of Aspergillus fumigatus. mSphere 4

    Google Scholar 

  • Narimatsu H (2006) Human glycogene cloning: focus on beta 3-glycosyltransferase and beta 4-glycosyltransferase families. Curr Opin Struct Biol 16:567–575

    Article  CAS  PubMed  Google Scholar 

  • Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, Vanhandel M, Andes D (2007) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520

    Article  CAS  PubMed  Google Scholar 

  • Nett, JE, Andes D (2017) The role of biofilm matrix in mediating antifungal resistance. Handbook of antimicrobial resistance

    Google Scholar 

  • Nett JE, Sanchez H, Cain MT, Andes DR (2010) Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202:171–175

    Article  CAS  PubMed  Google Scholar 

  • Nett JE, Zarnowski R, Cabezas-Olcoz J, Brooks EG, Bernhardt J, Marchillo K, Mosher DF, Andes DR (2015) Host contributions to construction of three device-associated Candida albicans biofilms. Infect Immun 83:4630–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimrichter L, Frases S, Cinelli LP, Viana NB, Nakouzi A, Travassos LR, Casadevall A, Rodrigues ML (2007) Self-aggregation of Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent cations. Eukaryot Cell 6:1400–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile CJ, Johnson AD (2015) Candida albicans Biofilms and Human Disease. Annu Rev Microbiol 69:71–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP (2008) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18:1017–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka T (2018) Biosynthesis of galactomannans found in filamentous fungi belonging to Pezizomycotina. Biosci Biotechnol Biochem 82:183–191

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer M, Poulin MB, Lowary TL, Helm RF, Sobrado P (2010) Characterization of recombinant UDP-galactopyranose mutase from Aspergillus fumigatus. Arch Biochem Biophys 502:31–38

    Article  CAS  PubMed  Google Scholar 

  • Ostapska H, Howell PL, Sheppard DCJPP (2018) Deacetylated microbial biofilm exopolysaccharides: it pays to be positive. PLoS Pathog 14:e1007411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panariello BH, Klein MI, Alves F, Pavarina AC (2019) DNase increases the efficacy of antimicrobial photodynamic therapy on Candida albicans biofilms. Photodiagn Photodyn Ther

    Google Scholar 

  • Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD (2016) Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases Society of America. Clin Infect Dis 62:e1–e50

    Article  PubMed  Google Scholar 

  • Patin EC, Thompson A, Orr SJ (2019) Pattern recognition receptors in fungal immunity. Semin Cell Dev Biol 89:24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulussen C, Hallsworth JE, Alvarez-Perez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B (2017) Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 10:296–322

    Article  PubMed  Google Scholar 

  • Peaucelle A, Braybrook S, Hofte H (2012) Cell wall mechanics and growth control in plants: the role of pectins revisited. Front Plant Sci 3:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, Sun J, Michiels C, Iserentant D, Verachtert H (2001) Decrease in cell surface galactose residues of Schizosaccharomyces pombe enhances its coflocculation with Pediococcus damnosus. Appl Environ Microbiol 67:3413–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce CG, Vila T, Romo JA, Montelongo-Jauregui D, Wall G, Ramasubramanian A, Lopez-Ribot JL (2017) The Candida albicans biofilm matrix: composition, structure and function. 3:14

    Google Scholar 

  • Pitangui NS, Sardi JCO, Silva JF, Benaducci T, Moraes da Silva RA, Rodríguez-Arellanes G, Taylor ML, Mendes-Giannini MJS, Fusco-Almeida AM (2012) Adhesion of Histoplasma capsulatum to pneumocytes and biofilm formation on an abiotic surface. Biofouling 28(7):711–718

    Article  CAS  PubMed  Google Scholar 

  • Priegnitz B-E, Wargenau A, Brandt U, Rohde M, Dietrich S, Kwade A, Krull R, Fleißner A (2012) The role of initial spore adhesion in pellet and biofilm formation in Aspergillus niger. Fungal Genet Biol 49:30–38

    Article  CAS  PubMed  Google Scholar 

  • Pringle RB (1981) Nonspecific adhesion of Bipolaris sorokiniana sporelings. Canadian J Plant Pathology 3:9–11

    Article  CAS  Google Scholar 

  • Rajendran R, Williams C, Lappin DF, Millington O, Martins M, Ramage GJEC (2013) Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell 12:420–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355

    Article  CAS  PubMed  Google Scholar 

  • Rambach G, Blum G, Latge JP, Fontaine T, Heinekamp T, Hagleitner M, Jeckstrom H, Weigel G, Wurtinger P, Pfaller K, Krappmann S, Loffler J, Lass-Florl C, Speth C (2015) Identification of Aspergillus fumigatus surface components that mediate interaction of conidia and hyphae with human platelets. J Infect Dis 212:1140–1149

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Givskov MJIJOMM (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161

    Article  CAS  PubMed  Google Scholar 

  • Raut JS, Shinde RB, Chauhan NM, Karuppayil SM (2014) Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans. J Microbiol Biotechnol 24:1216–1225

    Article  CAS  PubMed  Google Scholar 

  • Raut JS, Shinde RB, Chauhan NM, Mohan Karuppayil S (2013) Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 29(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Reichhardt C, Ferreira JA, Joubert L-M, Clemons KV, Stevens DA, Cegelski L (2015) Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy. Eukaryot Cell 14:1064–1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichhardt C, Joubert LM, Clemons KV, Stevens DA, Cegelski L (2019) Integration of electron microscopy and solid-state NMR analysis for new views and compositional parameters of Aspergillus fumigatus biofilms. Med Mycol 57:S239–S244

    Article  CAS  PubMed  Google Scholar 

  • Reichhardt C, Stevens DA, Cegelski L (2016) Fungal biofilm composition and opportunities in drug discovery. Future Med Chem 8:1455–1468

    Article  CAS  PubMed  Google Scholar 

  • Richard ML, Plaine A (2007) Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133

    Article  CAS  PubMed  Google Scholar 

  • Rini JM, Esko JD (2017) Glycosyltransferases and glycan-processing enzymes. In: Essentials of glycobiology [Internet], 3rd edn. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Ruperez P, Leal J (1981) Extracellular galactosaminogalactan from Aspergillus parasiticus. Trans British Mycol Soc 77:621–625

    Article  CAS  Google Scholar 

  • Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti M, Posteraro B (2016) Diagnostic of fungal infections related to biofilms. Adv Exp Med Biol 931:63–82

    Article  PubMed  Google Scholar 

  • Sardi JDCO, Silva DR, Mendes-Giannini MJS, Rosalen PL (2018) Candida auris: epidemiology, risk factors, virulence, resistance, and therapeutic options. Microb Pathog 125:116–121

    Article  Google Scholar 

  • Schmidt CS, White CJ, Ibrahim AS, Filler SG, Fu Y, Yeaman MR, Edwards JE Jr, Hennessey JP Jr (2012) NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 30(52):7594–7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seneviratne CJ, Jin L, Samaranayake LP (2008) Biofilm lifestyle of Candida: a mini review. Oral Dis 14:582–590

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne CJ, Truong T, Wang Y (2017) Candida biofilms: properties, antifungal resistance and novel therapeutic options. Microbial Biofilms. CRC Press, Boca Raton, Florida, pp 103–128

    Google Scholar 

  • Sheppard DC (2011) Molecular mechanism of Aspergillus fumigatus adherence to host constituents. Curr Opin Microbiol 14:375–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard DC, Howell PL (2016) Biofilm exopolysaccharides of pathogenic fungi: lessons from bacteria. J Biol Chem 291:12529–12537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279(29):30480–30489

    Article  CAS  PubMed  Google Scholar 

  • Shibata N, Kobayashi H, Suzuki S (2012) Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci 88:250–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Paterson DL (2005) Aspergillus infections in transplant recipients. Clin Microbiol Rev 18:44–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Shivaprakash MR, Chakrabarti A (2011) Biofilm formation by zygomycetes: quantification, structure and matrix composition. Microbiology 157:2611–2618

    Article  CAS  PubMed  Google Scholar 

  • Snarr BD, Baker P, Bamford NC, Sato Y, Liu H, Lehoux M, Gravelat FN, Ostapska H, Baistrocchi SR, Cerone RP (2017a) Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proc Natl Acad Sci 114:7124–7129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snarr BD, Qureshi ST, Sheppard DC (2017b) Immune recognition of fungal polysaccharides. J Fungi 3:47

    Article  CAS  Google Scholar 

  • Soll DR, Daniels KJ (2016) Plasticity of Candida albicans biofilms. Microbiol Mol Biol Rev 80:565–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speth C, Rambach G, Lass-Flörl C, Howell PL, Sheppard DC (2019) Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. 1–8

    Google Scholar 

  • Sroisiri T, Boonyanit T (2010) Inhibition of candida adhesion to denture acrylic by Boesenbergia pandurata. Asian Pacific J Trop Med 3:272–275

    Article  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Steele C, Rapaka RR, Metz A, Pop SM, Williams DL, Gordon S, Kolls JK, Brown GD (2005). The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. 1:e42

    Google Scholar 

  • Stephen-Victor E, Karnam A, Fontaine T, Beauvais A, Das M, Hegde P, Prakhar P, Holla S, Balaji KN, Kaveri SV, Latge JP, Aimanianda V, Bayry J (2017) Aspergillus fumigatus cell wall alpha-(1,3)-glucan stimulates regulatory T-cell polarization by inducing PD-L1 expression on human dendritic cells. J Infect Dis 216:1281–1294

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  • Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Kadowaki K (1985) Purification and chemical properties of a flocculant produced by Paecilomyces. Agricu Biol Chem 49:3159–3164

    CAS  Google Scholar 

  • Tan Y, Leonhard M, Ma S, Moser D, Schneider-Stickler B (2017) Dispersal of single and mixed non-albicans Candida species biofilms by β-1, 3-glucanase in vitro. Microbial Pathog 113:342–347

    Article  CAS  Google Scholar 

  • Tan Y, Ma S, Leonhard M, Moser D, Schneider-Stickler B (2018) β-1, 3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185. Int J Biol Macromol 108:942–946

    Article  CAS  PubMed  Google Scholar 

  • Tekaia F, Latge JP (2005) Aspergillus fumigatus: saprophyte or pathogen? Curr Opin Microbiol 8:385–392

    Article  CAS  PubMed  Google Scholar 

  • Umeyama T, Kaneko A, Watanabe H, Hirai A, Uehara Y, Niimi M, Azuma M (2006) Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Infect Immun 74:2373–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, Kadosh D, Lopez-Ribot JL (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8:668–676

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav VV, Bacon BE, O’Neill M, Cherniak R (1998) Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap67. 306:315–330

    Google Scholar 

  • Vallabhaneni S, Jackson BR, Chiller TM (2019) Candida auris: an emerging antimicrobial resistance threat. Ann Int Med

    Google Scholar 

  • van Acker H, van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22:326–333

    Article  PubMed  CAS  Google Scholar 

  • van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latge JP (2017) Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol 15:661–674

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25:1323–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vediyappan G, Rossignol T, D’Enfert C (2010) Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 54:2096–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer W, Tomasz A (2002) Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect Immunity 70:7176–7178

    Article  CAS  Google Scholar 

  • Walther G, Wagner L, Kurzai O (2019) Outbreaks of mucorales and the species involved. Mycopathologia

    Google Scholar 

  • Wang H, Fei S, Wang Y, Zan L, Zhu J (2020). Comparative study on the self-assembly of pectin and alginate molecules regulated by calcium ions investigated by atomic force microscopy. Carbohydr Polym 231:115673

    Google Scholar 

  • Wang YC, Huang SH, Lan CY, Chen BS (2012) Prediction of phenotype-associated genes via a cellular network approach: a Candida albicans infection case study. PLoS ONE 7:e35339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ (2011) Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals. J Med Microbiol 60:1241–1247

    Article  CAS  PubMed  Google Scholar 

  • Wuyts J, van Dijck P, Holtappels M (2018) Fungal persister cells: the basis for recalcitrant infections? PLoS Pathog 14:e1007301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Z, Thompson A, Sobue T, Kashleva H, Xu H, Vasilakos J, Dongari-Bagtzoglou A (2012) Candida albicans Biofilms do not trigger reactive oxygen species and evade neutrophil killing. J Infecti Dis 206:1936–1945

    Article  CAS  Google Scholar 

  • Yamada H, Kawaguchi N, Ohmori T, Takeshita Y, Taneya S-I, Miyazaki T (1984) Structure of a galactosaminoglycan from Cordyceps ophioglossoides. CarbohydrRes 134:275–282

    Article  CAS  Google Scholar 

  • Yapar N (2014) Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 10:95–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarnowski R, Sanchez H, Andes DR (2016) Large-scale production and isolation of Candida biofilm extracellular matrix. Nat Protoc 11:2320–2327

    Article  CAS  PubMed  Google Scholar 

  • Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, Bernhardt J, Mitchell KF, Heiss C, Azadi P, Mitchell A, Andes DR (2018) Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol 16:e2006872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Sahraoui ALH, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5(4):e01333–e01414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhou M, Yang T, Haslam SM, Dell A, Wu H (2016) New helical binding domain mediates a glycosyltransferase activity of a bifunctional protein. J Biol Chem 291:22106–22117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Chen Y, Ma Z, Chen Q, Ostapska H, Gravelat FN, Lu L, Sheppard DC (2018) PtaB, a lim‐domain binding protein in Aspergillus fumigatus regulates biofilm formation and conidiation through distinct pathways. Cell Microbiol 20

    Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Don Sheppard for is mentorship and review of the book chapter. I am also grateful to Josée Chabot, Ira Lacdao, Yazan Abu Yousef, and Ansh Goyal for their review of the different sections of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Le Mauff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Mauff, F. (2020). Exopolysaccharides and Biofilms. In: Latgé, JP. (eds) The Fungal Cell Wall . Current Topics in Microbiology and Immunology, vol 425. Springer, Cham. https://doi.org/10.1007/82_2020_199

Download citation

Publish with us

Policies and ethics