Skip to main content

Glucanases and Chitinases

  • Chapter
  • First Online:
The Fungal Cell Wall

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 425))

Abstract

In many yeast and fungi, β-(1,3)-glucan and chitin are essential components of the cell wall, an important structure that surrounds cells and which is responsible for their mechanical protection and necessary for maintaining the cellular shape. In addition, the cell wall is a dynamic structure that needs to be remodelled along with the different phases of the fungal life cycle or in response to extracellular stimuli. Since β-(1,3)-glucan and chitin perform a central structural role in the assembly of the cell wall, it has been postulated that β-(1,3)-glucanases and chitinases should perform an important function in cell wall softening and remodelling. This review focusses on fungal glucanases and chitinases and their role during fungal morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    CAS  PubMed  Google Scholar 

  • Alcazar-Fuoli L, Clavaud C, Lamarre C et al (2011) Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol 48:418–429

    CAS  PubMed  Google Scholar 

  • Alonso-Nuñez ML, An H, Martín-Cuadrado AB et al (2005) Ace2p controls the expression of genes required for cell separation in Schizosaccharomyces pombe. Mol Biol Cell 16:2003–2017

    PubMed  PubMed Central  Google Scholar 

  • Ao J, Aldabbous M, Notaro MJ et al (2016) A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling. Fungal Genet Biol 94:47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aspeborg H, Coutinho PM, Wang Y et al (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker LG, Specht CA, Lodge JK (2009) Chitinases are essential for sexual development but not vegetative growth in Cryptococcus neoformans. Eukaryot Cell 8:1692–1705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baladrón V, Ufano S, Dueñas E et al (2002) Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1:774–786

    PubMed  PubMed Central  Google Scholar 

  • Bandara PD, Flattery-O’Brien JA, Grant CM et al (1998) Involvement of the Saccharomyces cerevisiae UTH1 gene in the oxidative-stress response. Curr Genet 34:259–268

    CAS  PubMed  Google Scholar 

  • Beauvais A, Bozza S, Kniemeyer O et al (2013) Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 9:e1003716

    PubMed  PubMed Central  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600

    CAS  PubMed  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808

    PubMed  Google Scholar 

  • Brunner K, Peterbauer CK, Mach RL et al (2003) The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43:289–295

    CAS  PubMed  Google Scholar 

  • Butler AR, O’Donnell RW, Martin VJ et al (1991) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483–488

    CAS  PubMed  Google Scholar 

  • Cabib E, Arroyo J (2013) How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 11:648–655

    CAS  PubMed  Google Scholar 

  • Cabib E, Durán A (2005) Synthase III-dependent chitin is bound to different acceptors depending on location on the cell wall of budding yeast. J Biol Chem 280:9170–9179

    CAS  PubMed  Google Scholar 

  • Cabib E, Roh DH, Schmidt M et al (2001) The yeast cell wall and septum as paradigms of cell growth morphogenesis. J Biol Chem 276:19679–19682

    CAS  PubMed  Google Scholar 

  • Cabib E, Sburlati A, Bowers B et al (1989) Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 108:1665–1672

    CAS  PubMed  Google Scholar 

  • Cabib E, Silverman SJ, Shaw JA (1992) Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbiol 138:97–102

    CAS  PubMed  Google Scholar 

  • Camougrand N, Kissova I, Velours G et al (2004) Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death. FEMS Yeast Res 5:133–140

    CAS  PubMed  Google Scholar 

  • Cappellaro C, Mrsa V, Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J. Bacteriol. 180: 5030–3037

    Google Scholar 

  • CAZypedia_Consortium (2018) Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology 28:3–8

    Google Scholar 

  • Colman-Lerner A, Chin TE, Brent R (2001) Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107:739–750

    CAS  PubMed  Google Scholar 

  • Courtade G, Aachmann FL (2019) Chitin-Active Lytic Polysaccharide Monooxygenases. Adv Exp Med Biol 1142:115–129

    CAS  PubMed  Google Scholar 

  • Chambers RS, Broughton MJ, Cannon RD et al (1993) An exo-β-(1,3)-glucanase of Candida albicans: purification of the enzyme and molecular cloning of the gene. J Gen Microbiol 139:325–334

    CAS  PubMed  Google Scholar 

  • Chen F, Chen XZ, Qin LN et al (2015) Characterization and homologous overexpression of an N-acetylglucosaminidase Nag1 from Trichoderma reesei. Biochem Biophys Res Commun 459:184–188

    CAS  PubMed  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    CAS  PubMed  Google Scholar 

  • de la Cruz J, Pintor-Toro JA, Benitez T et al (1995) A novel endo-β-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J Bacteriol 177:6937–6945

    PubMed  PubMed Central  Google Scholar 

  • Dekker N, Speijer D, Grün CH et al (2004) Role of the α-glucanase Agn1p in fission-yeast cell separation. Mol Biol Cell 15:3903–3914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker N, van Rijssel J, Distel B et al (2007) Role of the α-glucanase Agn2p in ascus-wall endolysis following sporulation in fission yeast. Yeast 24:279–288

    CAS  PubMed  Google Scholar 

  • Dudin O, Merlini L, Bendezu FO et al (2017) A systematic screen for morphological abnormalities during fission yeast sexual reproduction identifies a mechanism of actin aster formation for cell fusion. PLoS Genet 13:e1006721

    PubMed  PubMed Central  Google Scholar 

  • Dueñas-Santero E, Martín-Cuadrado AB, Fontaine T et al (2010) Characterization of glycoside hydrolase family 5 proteins in Schizosaccharomyces pombe. Eukaryot Cell 9:1650–1660

    PubMed  PubMed Central  Google Scholar 

  • Dünkler A, Jorde S, Wendland J (2008) An Ashbya gossypii cts2 mutant deficient in a sporulation-specific chitinase can be complemented by Candida albicans CHT4. Microbiol Res 163:701–710

    PubMed  Google Scholar 

  • Dünkler A, Walther A, Specht CA et al (2005) Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae. Fungal Genet Biol 42:935–947

    PubMed  Google Scholar 

  • Encinar del Dedo J, Dueñas E, Arnáiz Y et al (2009) β-glucanase Eng2 is required for ascus wall endolysis after sporulation in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 8:1278–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Encinar del Dedo J, Idrissi FZ, Arnáiz-Pita Y et al (2014) Eng2 is a component of a dynamic protein complex required for endocytic uptake in fission yeast. Traffic 15:1122–1142

    CAS  PubMed  Google Scholar 

  • Ene IV, Walker LA, Schiavone M et al (2015) Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. mBio 6:e00986

    Google Scholar 

  • Erwig LP, Gow NA (2016) Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14:163–176

    CAS  PubMed  Google Scholar 

  • Esteban PF, Ríos I, García R et al (2005) Characterization of the CaENG1 gene encoding an endo-1,3-β-glucanase involved in cell separation in Candida albicans. Curr Microbiol 51:385–392

    CAS  PubMed  Google Scholar 

  • Firon A, Aubert S, Iraqui I et al (2007) The SUN41 and SUN42 genes are essential for cell separation in Candida albicans. Mol Microbiol 66:1256–1275

    CAS  PubMed  Google Scholar 

  • Fontaine T, Hartland RP, Beauvais A et al (1997a) Purification and characterization of an endo-1,3-β-glucanase from Aspergillus fumigatus. Eur J Biochem 243:315–321

    CAS  PubMed  Google Scholar 

  • Fontaine T, Hartland RP, Diaquin M et al (1997b) Differential patterns of activity displayed by two exo-β-1,3-glucanases associated with the Aspergillus fumigatus cell wall. J Bacteriol 179:3154–3163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine T, Simenel C, Dubreucq G et al (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607

    CAS  PubMed  Google Scholar 

  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82

    CAS  PubMed  Google Scholar 

  • Gancedo C, Flores CL (2008) Moonlighting proteins in yeasts. Microbiol Mol Biol Rev 72:197–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-Cortés JC, Ramos M, Osumi M et al (2016) The cell biology of fission yeast septation. Microbiol Mol Biol Rev 80:779–791

    PubMed  PubMed Central  Google Scholar 

  • García I, Jiménez D, Martín V et al (2005) The α-glucanase Agn1p is required for cell separation in Schizosaccharomyces pombe. Biol Cell 97:569–576

    PubMed  Google Scholar 

  • Garfoot AL, Dearing KL, VanSchoiack AD et al (2017) Eng1 and Exg8 are the major β-Glucanases secreted by the fungal pathogen Histoplasma capsulatum. J Biol Chem 292:4801–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gastebois A, Aimanianda V, Bachellier-Bassi S et al (2013) SUN proteins belong to a novel family of β-(1,3)-glucan-modifying enzymes involved in fungal morphogenesis. J Biol Chem 288:13387–13396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gastebois A, Clavaud C, Aimanianda V et al (2009) Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future Microbiol 4:583–595

    CAS  PubMed  Google Scholar 

  • Geoghegan I, Steinberg G, Gurr S (2017) The role of the fungal cell wall in the infection of plants. Trends Microbiol 25:957–967

    CAS  PubMed  Google Scholar 

  • Gómez A, Pérez J, Reyes A et al (2009) Slt2 and Rim101 contribute independently to the correct assembly of the chitin ring at the budding yeast neck in Saccharomyces cerevisiae. Eukaryot Cell 8:1449–1459

    PubMed  PubMed Central  Google Scholar 

  • González MM, Díez-Orejas R, Molero G et al (1997) Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase. Microbiology 143:3023–3032

    PubMed  Google Scholar 

  • Gow NAR, Latgé JP, Munro CA (2017) the fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5

    Google Scholar 

  • Gruber S, Seidl-Seiboth V (2012) Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 158:26–34

    CAS  PubMed  Google Scholar 

  • Hartl L, Gastebois A, Aimanianda V et al (2011) Characterization of the GPI-anchored endo β-1,3-glucanase Eng2 of Aspergillus fumigatus. Fungal Genet Biol 48:185–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93:533–543

    CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Callebaut I, Fabrega S et al (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094

    CAS  PubMed  Google Scholar 

  • Hiller E, Heine S, Brunner H et al (2007) Candida albicans Sun41p, a putative glycosidase, is involved in morphogenesis, cell wall biogenesis, and biofilm formation. Eukaryot Cell 6:2056–2065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopke A, Brown AJP, Hall RA et al (2018) Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol 26:284–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horn SJ, Sorbotten A, Synstad B et al (2006) Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 273:491–503

    CAS  PubMed  Google Scholar 

  • Iorio E, Torosantucci A, Bromuro C et al (2008) Candida albicans cell wall comprises a branched β-D-(1–6)-glucan with β-D-(1–3)-side chains. Carbohydr Res 343:1050–1061

    CAS  PubMed  Google Scholar 

  • Jablonowski D, Fichtner L, Martin VJ et al (2001) Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor. Yeast 18:1285–1299

    CAS  PubMed  Google Scholar 

  • Jiang B, Ram AF, Sheraton J et al (1995) Regulation of cell wall β-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol Gen Genet 248:260–269

    CAS  PubMed  Google Scholar 

  • Kapteyn JC, Montijn RC, Vink E et al (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β-1,3-/β-1,6-glucan heteropolymer. Glycobiology 6:337–345

    CAS  PubMed  Google Scholar 

  • Kapteyn JC, Ram AF, Groos EM et al (1997) Altered extent of cross-linking of β-1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β-1,3-glucan content. J Bacteriol 179:6279–6284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson M, Stenlid J (2008) Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evol Bioinform Online 4:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MT, MacCallum DM, Clancy SD et al (2004) The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53:969–983

    CAS  PubMed  Google Scholar 

  • Kim DJ, Baek JM, Uribe P et al (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384

    CAS  PubMed  Google Scholar 

  • Klis FM, Caro LH, Vossen JH et al (1997) Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae. Biochem Soc Trans 25:856–860

    CAS  PubMed  Google Scholar 

  • Klis FM, de Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39(Suppl 1):1–8

    CAS  PubMed  Google Scholar 

  • Klis FM, de Koster CG, Brul S (2014) Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryot Cell 13:2–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K et al (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256

    CAS  PubMed  Google Scholar 

  • Kollar R, Petrakova E, Ashwell G et al (1995) Architecture of the yeast cell wall. The linkage between chitin and β(1–3)-glucan. J Biol Chem 270:1170–1178

    CAS  PubMed  Google Scholar 

  • Kollar R, Reinhold BB, Petrakova E et al (1997) Architecture of the yeast cell wall. β(1–6)-glucan interconnects mannoprotein, β(1–3)-glucan, and chitin. J Biol Chem 272:17762–17775

    CAS  PubMed  Google Scholar 

  • Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767

    CAS  PubMed  Google Scholar 

  • Kuznetsov E, Vachova L, Palkova Z (2016) Cellular localization of Sun4p and its interaction with proteins in the yeast birth scar. Cell Cycle 15:1898–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langner T, Göhre V (2016) Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 62:243–254

    CAS  PubMed  Google Scholar 

  • Langner T, Ozturk M, Hartmann S et al (2015) Chitinases are essential for cell separation in Ustilago maydis. Eukaryot Cell 14:846–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larriba G, Andaluz E, Cueva R et al (1995) Molecular biology of yeast exoglucanases. FEMS Microbiol Lett 125:121–126

    CAS  PubMed  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    PubMed  Google Scholar 

  • Latgé JP, Beauvais A (2014) Functional duality of the cell wall. Curr Opin Microbiol 20:111–117

    PubMed  Google Scholar 

  • Latgé JP, Beauvais A, Chamilos G (2017) The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol 71:99–116

    PubMed  Google Scholar 

  • Lechler T, Li R (1997) In vitro reconstitution of cortical actin assembly sites in budding yeast. J Cell Biol 138:95–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipke P (2018) What we do not know about fungal cell adhesion molecules. J Fungi 4:59

    Google Scholar 

  • Lipke P, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    CAS  PubMed  Google Scholar 

  • Magnelli PE, Cipollo JF, Robbins PW (2005) A glucanase-driven fractionation allows redefinition of Schizosaccharomyces pombe cell wall composition and structure: assignment of diglucan. Anal Biochem 336:202–212

    CAS  PubMed  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC et al (1973) The structure of a β-(1–6)-D-glucan from yeast cell walls. Biochem J 135:31–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Bo Y, Han L et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203

    CAS  PubMed  Google Scholar 

  • Martín-Cuadrado AB, Dueñas E, Sipiczki M et al (2003) The endo-β-1,3-glucanase Eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 116:1689–1698

    PubMed  Google Scholar 

  • Martín-Cuadrado AB, Encinar del Dedo J, de Medina-Redondo M et al (2008a) The Schizosaccharomyces pombe endo-1,3-β-glucanase Eng1 contains a novel carbohydrate binding module required for septum localization. Mol Microbiol 69:188–200

    PubMed  Google Scholar 

  • Martín-Cuadrado AB, Fontaine T, Esteban PF et al (2008b) Characterization of the endo-β-1,3-glucanase activity of S. cerevisiae Eng2 and other members of the GH81 family. Fungal Genet Biol 45:542–553

    PubMed  Google Scholar 

  • Martín-Cuadrado AB, Morrell JL, Konomi M et al (2005) Role of septins and the exocyst complex in the function of hydrolytic enzymes responsible for fission yeast cell separation. Mol Biol Cell 16:4867–4881

    PubMed  PubMed Central  Google Scholar 

  • Martin K, McDougall BM, McIlroy S et al (2007) Biochemistry and molecular biology of exocellular fungal β-(1,3)- and β-(1,6)-glucanases. FEMS Microbiol Rev 31:168–192

    CAS  PubMed  Google Scholar 

  • Maurer LM, Ma W, Mosher DF (2015) Dynamic structure of plasma fibronectin. Crit Rev Biochem Mol Biol 51:213–227

    PubMed  Google Scholar 

  • McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    CAS  PubMed  Google Scholar 

  • Mertz B, Gu X, Reilly PJ (2009) Analysis of functional divergence within two structurally related glycoside hydrolase families. Biopolymers 91:478–495

    CAS  PubMed  Google Scholar 

  • Millet N, Moya-Nilges M, Sachse M, et al (2019) Aspergillus fumigatus exo β(1–3)glucanases family GH55 are essential for conidial cell wall morphogenesis. Cell Microbiol:e13102

    Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360

    CAS  Google Scholar 

  • Mouassite M, Camougrand N, Schwob E et al (2000) The ‘SUN’ family: yeast SUN4/SCW3 is involved in cell septation. Yeast 16:905–919

    CAS  PubMed  Google Scholar 

  • Mouyna I, Aimanianda V, Hartl L et al (2016) GH16 and GH81 family β-(1,3)-glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis. Cell Microbiol 18:1285–1293

    CAS  PubMed  Google Scholar 

  • Mouyna I, Harland RP, Fontaine T et al (1998) A 1,3-β-glucanosyltransferase isolated from the cell wall of Aspergillus fumigatus is a homologue of the yeast Bgl2p. Microbiology 144:3171–3180

    CAS  PubMed  Google Scholar 

  • Mouyna I, Hartl L, Latgé JP (2013) β-1,3-glucan modifying enzymes in Aspergillus fumigatus. Front Microbiol 4:81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mouyna I, Sarfati J, Recco P et al (2002) Molecular characterization of a cell wall-associated β(1–3)endoglucanase of Aspergillus fumigatus. Med Mycol 40:455–464

    CAS  PubMed  Google Scholar 

  • Moy M, Li HM, Sullivan R et al (2002) Endophytic fungal b-1,6-glucanase expression in the infected host grass. Plant Physiol 130:1298–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumar G, Suhng SH, Magee PT et al (1993) The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-β-glucanase which contributes to ascospore thermoresistance. J Bacteriol 175:386–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norice CT, Smith FJ Jr, Solis N et al (2007) Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot Cell 6:2046–2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omi K, Sonoda H, Nagata K et al (1999) Cloning and characterization of psu1(+), a new essential fission yeast gene involved in cell wall synthesis. Biochem Biophys Res Commun 262:368–374

    CAS  PubMed  Google Scholar 

  • Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelissier P, Camougrand N, Velours G et al (1995) NCA3, a nuclear gene involved in the mitochondrial expression of subunits 6 and 8 of the Fo-F1 ATP synthase of S. cerevisiae. Curr Genet 27:409–416

    CAS  PubMed  Google Scholar 

  • Pitson SM, Seviour RJ, McDougall BM (1993) Noncellulolytic fungal β-glucanases: their physiology and regulation. Enzyme Microb Technol 15:178–192

    CAS  PubMed  Google Scholar 

  • Reese AJ, Yoneda A, Breger JA et al (2007) Loss of cell wall α(1–3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol Microbiol 63:1385–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riquelme M, Aguirre J, Bartnicki-Garcia S et al (2018) Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol, Rev, p 82

    Google Scholar 

  • Ritch JJ, Davidson SM, Sheehan JJ et al (2010) The Saccharomyces SUN gene, UTH1, is involved in cell wall biogenesis. FEMS Yeast Res 10:168–176

    CAS  PubMed  Google Scholar 

  • Roncero C, Sánchez Y (2010) Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 27:521–530

    CAS  PubMed  Google Scholar 

  • Royle SJ (2011) Mitotic moonlighting functions for membrane trafficking proteins. Traffic 12:791–798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuda S, Inoue H, Nagasawa H (2013) Novel biological activities of allosamidins. Molecules 18:6952–6968

    CAS  PubMed  PubMed Central  Google Scholar 

  • San-Blas G, San-Blas F, Serrano LE (1977) Host-parasite relationships in the yeastlike form of Paracoccidioides brasiliensis strain IVIC Pb9. Infect Immun 15:343–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • San Segundo P, Correa J, Vázquez de Aldana CR et al (1993) SSG1, a gene encoding a sporulation-specific 1,3-β-glucanase in Saccharomyces cerevisiae. J Bacteriol 175:3823–3837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahinian S, Bussey H (2000) β-1,6-glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489

    CAS  PubMed  Google Scholar 

  • Sherrington SL, Sorsby E, Mahtey N et al (2017) Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog 13:e1006403

    PubMed  PubMed Central  Google Scholar 

  • Sipiczki M (2007) Splitting of the fission yeast septum. FEMS Yeast Res 7:761–770

    CAS  PubMed  Google Scholar 

  • Sipiczki M, Balazs A, Monus A et al (2014) Phylogenetic and comparative functional analysis of the cell-separation α-glucanase Agn1p in Schizosaccharomyces. Microbiology 160:1063–1074

    CAS  PubMed  Google Scholar 

  • Skory CD, Freer SN (1995) Cloning and characterization of a gene encoding a cell-bound, extracellular β-glucosidase in the yeast Candida wickerhamii. Appl Environ Microbiol 61:518–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stajich JE, Berbee ML, Blackwell M et al (2009) The fungi. Curr Biol 19:R840–R845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stubbs HJ, Brasch DJ, Emerson GW et al (1999) Hydrolase and transferase activities of the β-1,3-exoglucanase of Candida albicans. Eur J Biochem 263:889–895

    CAS  PubMed  Google Scholar 

  • Su C, Lu Y, Liu H (2016) N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi. Nat Commun 7:12916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suyotha W, Yano S, Wakayama M (2016) α-1,3-Glucanase: present situation and prospect of research. World J Microbiol Biotechnol 32:30

    PubMed  Google Scholar 

  • Suzuki K, Yabe T, Maruyama Y et al (2001) Characterization of recombinant yeast exo-β-1,3-glucanase (Exg1p) expressed in Escherichia coli cells. Biosci Biotechnol Biochem 65:1310–1314

    CAS  PubMed  Google Scholar 

  • Tzelepis G, Hosomi A, Hossain TJ et al (2014) Endo-β-N-acetylglucosamidases (ENGases) in the fungus Trichoderma atroviride: possible involvement of the filamentous fungi-specific cytosolic ENGase in the ERAD process. Biochem Biophys Res Commun 449:256–261

    CAS  PubMed  Google Scholar 

  • Tzelepis GD, Melin P, Jensen DF et al (2012) Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genet Biol 49:717–730

    CAS  PubMed  Google Scholar 

  • Ufano S, Pablo ME, Calzada A et al (2004) Swm1p subunit of the APC/cyclosome is required for activation of the daughter-specific gene expression program mediated by Ace2p during growth at high temperature in Saccharomyces cerevisiae. J Cell Sci 117:545–557

    CAS  PubMed  Google Scholar 

  • van Aalten DM, Komander D, Synstad B et al (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci U S A 98:8979–8984

    PubMed  PubMed Central  Google Scholar 

  • van Munster JM, Dobruchowska JM, Veloo R et al (2015) Characterization of the starvation-induced chitinase CfcA and α-1,3-glucanase AgnB of Aspergillus niger. Appl Microbiol Biotechnol 99:2209–2223

    PubMed  Google Scholar 

  • Vázquez de Aldana CR, Correa J, San Segundo P et al (1991) Nucleotide sequence of the exo-1,3-β-glucanase gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97:173–182

    PubMed  Google Scholar 

  • Velours G, Boucheron C, Manon S et al (2002) Dual cell wall/mitochondria localization of the ‘SUN’ family proteins. FEMS Microbiol Lett 207:165–172

    CAS  PubMed  Google Scholar 

  • Villalobos-Duno H, San-Blas G, Paulinkevicius M et al (2013) Biochemical characterization of Paracoccidioides brasiliensis α-1,3-glucanase Agn1p, and its functionality by heterologous expression in Schizosaccharomyces pombe. PLoS ONE 8:e66853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Scherer M, Singh A et al (2001) Aspergillus nidulans α-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet Biol 34:217–227

    CAS  PubMed  Google Scholar 

  • Yamazaki H, Tanaka A, Kaneko J et al (2008) Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet Biol 45:963–972

    CAS  PubMed  Google Scholar 

  • Yoshimi A, Miyazawa K, Abe K (2017) Function and biosynthesis of cell wall α-1,3-glucan in fungi. J Fungi (Basel) 3:63

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Spanish Government to CR (BFU2017-84508-P) and CRV (BIO2015-70195-C2-1-R) and from Junta de Castilla y León to CR (SA116G19). The IBFG is supported by Programa “Escalera de Excelencia” from Junta de Castilla y León (CLU-2017-03) and University of Salamanca. All Spanish funding is co-sponsored by the European Union FEDER programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Vázquez de Aldana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roncero, C., Vázquez de Aldana, C.R. (2019). Glucanases and Chitinases. In: Latgé, JP. (eds) The Fungal Cell Wall . Current Topics in Microbiology and Immunology, vol 425. Springer, Cham. https://doi.org/10.1007/82_2019_185

Download citation

Publish with us

Policies and ethics