Skip to main content

The Role of Melanin in Fungal Pathogenesis for Animal Hosts

  • Chapter
  • First Online:
Fungal Physiology and Immunopathogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 422))

Abstract

Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens—melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adibelli FM, Karabicak N, Akal A, Goncu T, Yilmaz OF, Bayraktar M, Adibelli FM, Karabicak N, Akal A, Goncu T et al (2016) Fonsecaea pedrosoi as a rare cause of acute conjunctival ulceration. Arquivos Brasileiros de Oftalmologia 79:261–263

    Article  PubMed  Google Scholar 

  • Al-Laaeiby A, Kershaw MJ, Penn TJ, Thornton CR (2016) Targeted disruption of melanin biosynthesis genes in the human pathogenic fungus Lomentospora prolificans and its consequences for pathogen survival. Int J Mol Sci 17:444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida-Paes R, Frases S, Fialho Monteiro PC, Gutierrez-Galhardo MC, Zancopé-Oliveira RM, Nosanchuk JD (2009) Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates. Microbes Infect 11:554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida-Paes R, Frases S, de Araújo GS, de Oliveira MME, Gerfen GJ, Nosanchuk JD, Zancopé-Oliveira RM (2012) Biosynthesis and functions of a melanoid pigment produced by species of the sporothrix complex in the presence of l-tyrosine. Appl Environ Microbiol 78:8623–8630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida-Paes R, de Oliveira LC, Oliveira MME, Gutierrez-Galhardo MC, Nosanchuk JD, Zancopé-Oliveira RM (2015) Phenotypic Characteristics associated with virulence of clinical isolates from the Sporothrix complex

    Google Scholar 

  • Almeida-Paes R, Figueiredo-Carvalho MHG, Brito-Santos F, Almeida-Silva F, Oliveira MME, Zancopé-Oliveira RM (2016) Melanins protect Sporothrix brasiliensis and Sporothrix schenckii from the antifungal effects of terbinafine. PLoS ONE 11:e0152796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida-Paes R, Almeida-Silva F, Pinto GCM, Almeida MA, Muniz MM, Pizzini CV, Gerfen GJ, Nosanchuk JD, Zancopé-Oliveira RM (2018) L-tyrosine induces the production of a pyomelanin-like pigment by the parasitic yeast-form of Histoplasma capsulatum. Med Mycol 56:506–509

    Article  PubMed Central  CAS  Google Scholar 

  • Alviano DS, Franzen AJ, Travassos LR, Holandino C, Rozental S, Ejzemberg R, Alviano CS, Rodrigues ML (2004) Melanin from Fonsecaea pedrosoi induces production of human antifungal antibodies and enhances the antimicrobial efficacy of phagocytes. Infect Immun 72:229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin S, Thywissen A, Heinekamp T, Saluz HP, Brakhage AA (2014) Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int J Med Microbiol 304:626–636

    Article  CAS  PubMed  Google Scholar 

  • Austin MB, Izumikawa M, Bowman ME, Udwary DW, Ferrer J-L, Moore BS, Noel JP (2004) Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. J Biol Chem 279:45162–45174

    Article  CAS  PubMed  Google Scholar 

  • Babior BM (1978) Oxygen-dependent microbial killing by phagocytes. N Engl J Med 298:721–725

    Article  CAS  PubMed  Google Scholar 

  • Baker LG, Specht CA, Donlin MJ, Lodge JK (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6:855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK (2005) A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 4:1902–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basarab GS, Steffens JJ, Wawrzak Z, Schwartz RS, Lundqvist T, Jordan DB (1999) Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Biochemistry 38:6012–6024

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Bhetariya PJ, Madan T, Basir SF, Varma A, Usha SP (2011) Allergens/antigens, toxins and polyketides of important Aspergillus species. Indian J Clin Biochem 26:104–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissy RE, Sakai C, Zhao H, Kobayashi T, Hearing VJ (1998) Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1. Exp Dermatol 7:198–204

    Article  CAS  PubMed  Google Scholar 

  • Boyce KJ, McLauchlan A, Schreider L, Andrianopoulos A (2015) Intracellular growth is dependent on tyrosine catabolism in the dimorphic fungal pathogen Penicillium marneffei. PLoS Pathog 11:e1004790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84:539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broxton CN, Culotta VC (2016) SOD enzymes and microbial pathogens: surviving the oxidative storm of infection. PLoS Pathog 12:e1005295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bull AT (1970a) Inhibition of polysaccharases by melanin: enzyme inhibition in relation to mycolysis. Arch Biochem Biophys 137:345–356

    Article  CAS  PubMed  Google Scholar 

  • Bull AT (1970b) Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol 63:75–94

    Article  CAS  PubMed  Google Scholar 

  • Bull AT, Carter BLA (1973) The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. Microbiology 75:61–73

    CAS  Google Scholar 

  • Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O’Meally RN, Cordero RJB, Cole RN, McCaffery JM, Stark RE et al (2019). The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J. Biol. Chem. jbc.RA119.008684

    Google Scholar 

  • Cary JW, Harris-Coward PY, Ehrlich KC, Di Mavungu JD, Malysheva SV, De Saeger S, Dowd PF, Shantappa S, Martens SL, Calvo AM (2014) Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genet Biol 64:25–35

    Article  CAS  PubMed  Google Scholar 

  • Casadevall A, Cordero RJB, Bryan R, Nosanchuk J, Dadachova E (2017). Melanin, radiation, and energy transduction in fungi. Microbiol Spectr 5

    Google Scholar 

  • Casella L, Monzani E, Gullotti M, Cavagnino D, Cerina G, Santagostini L, Ugo R (1996) Functional modeling of tyrosinase. Mechanism of phenol ortho-hydroxylation by dinuclear copper complexes. Inorg Chem 35:7516–7525

    Article  CAS  Google Scholar 

  • Chai LYA, Netea MG, Sugui J, Vonk AG, Van De Sande WWJ, Warris A, Kwon-Chung KJ, Kullberg BJ (2010) Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 215:915–920

    Article  CAS  PubMed  Google Scholar 

  • Chan MY, Tay ST (2010) Enzymatic characterisation of clinical isolates of Cryptococcus neoformans, Cryptococcus gattii and other environmental Cryptococcus spp. Mycoses 53:26–31

    Article  CAS  PubMed  Google Scholar 

  • Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F (2009) Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 77:120–127

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Prados-Rosales R, Tan S, Phan VC, Chrissian C, Itin B, Wang H, Khajo A, Magliozzo RS, Casadevall A et al (2018) The melanization road more traveled by: precursor substrate effects on melanin synthesis in cell-free and fungal cell systems. J Biol Chem 293:20157–20168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Nunes MA, Silva MC, and Rodrigues CJ (2004) Appressorium turgor pressure of Colletotrichum kahawae might have a role in coffee cuticle penetration. Mycologia 96:1199–1208

    Article  PubMed  Google Scholar 

  • Chiang Y-M, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CCC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet Biol 48:430–437

    Article  CAS  PubMed  Google Scholar 

  • Chowdhary A, Perfect J, de Hoog GS (2014) Black molds and melanized yeasts pathogenic to humans. Cold Spring Harb Perspect Med 5:a019570

    Article  PubMed  CAS  Google Scholar 

  • Christopher LP, Yao B, Ji Y (2014) Lignin biodegradation with laccase-mediator systems. Front Energy Res 2

    Google Scholar 

  • Cunha MM, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, de Souza W, Rozental S (2010) Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol 10:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunha MML, Franzen AJ, Alviano DS, Zanardi E, Alviano CS, Souza WD, Rozental S (2005) Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of Fonsecaea pedrosoi against mouse macrophages. Microsc Res Tech 68:377–384

    Article  CAS  PubMed  Google Scholar 

  • Deatherage BL, Cookson BT (2012) Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80:1948–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeon-Rodriguez CM, Casadevall A (2016) Cryptococcus neoformans: tripping on acid in the phagolysosome. Front Microbiol 7

    Google Scholar 

  • Denat L, Kadekaro AL, Marrot L, Leachman S, Abdel-Malek ZA (2014) Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol 134:1512–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DM, Migliozzi J, Cooper CR, Solis O, Breslin B, Szaniszlo PJ (1992) Melanized and non-melanized multicellular form mutants of Wangiella dermatitidis in mice: mortality and histopathology studies. Mycoses 35:17–21

    Article  CAS  PubMed  Google Scholar 

  • Doering TL, Nosanchuk JD, Roberts WK, CASADEVALL A (1999) Melanin as a potential cryptococcal defence against microbicidal proteins. Med Mycol 37:175–181

    Article  CAS  PubMed  Google Scholar 

  • van Duin D, Casadevall A, Nosanchuk JD (2002) Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother 46:3394–3400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckhart L, Bach J, Ban J, Tschachler E (2000) Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. Biochem Biophys Res Commun 271:726–730

    Article  CAS  PubMed  Google Scholar 

  • Eisenman HC, Nosanchuk JD, Webber JBW, Emerson RJ, Camesano TA, Casadevall A (2005) Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44:3683–3693

    Article  CAS  PubMed  Google Scholar 

  • Farbiarz SR, de Carvalho TU, Alviano C, de Souza W (1992) Inhibitory effect of melanin on the interaction of Fonsecaea pedrosoi with mammalian cells in vitro. J Med Vet Mycol 30:265–273

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Wang X, Hauser M, Kaufmann S, Jentsch S, Haase G, Becker JM, Szaniszlo PJ (2001) Molecular cloning and characterization ofWdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in wangiella(Exophiala) dermatitidis. Infect Immun 69:1781–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes C, Prados-Rosales R, Silva BMA, Nakouzi-Naranjo A, Zuzarte M, Chatterjee S, Stark RE, Casadevall A, Gonçalves T (2016) Activation of melanin synthesis in Alternaria infectoria by antifungal drugs. Antimicrob Agents Chemother 60:1646–1655

    Article  CAS  PubMed Central  Google Scholar 

  • Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22:8983

    Article  CAS  PubMed  Google Scholar 

  • Franzen AJ, Cunha MML, Miranda K, Hentschel J, Plattner H, da Silva MB, Salgado CG, de Souza W, Rozental S (2008) Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi. J Struct Biol 162:75–84

    Article  CAS  PubMed  Google Scholar 

  • Frases S, Salazar A, Dadachova E, Casadevall A (2007) Cryptococcus neoformans can utilize the bacterial melanin precursor homogentisic acid for fungal melanogenesis. Appl Environ Microbiol 73:615–621

    Article  CAS  PubMed  Google Scholar 

  • García‐Borrón JC, Sánchez MCO (2011) Biosynthesis of melanins. In: Melanins and melanosomes. Wiley, pp 87–116

    Google Scholar 

  • Geis PA, Wheeler MH, Szaniszlo PJ (1984) Pentaketide metabolites of melanin synthesis in the dematiaceous fungus Wangiella dermatitidis. Arch Microbiol 137:324–328

    Article  CAS  PubMed  Google Scholar 

  • Gerdemann C, Eicken C, Krebs B (2002) The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Acc Chem Res 35:183–191

    Article  CAS  PubMed  Google Scholar 

  • Gessler NN, Aver’yanov AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochem Moscow 72:1091–1109

    Article  CAS  Google Scholar 

  • Gessler NN, Egorova AS, Belozerskaya TA (2014) Melanin pigments of fungi under extreme environmental conditions (Review). Appl Biochem Microbiol 50:105–113

    Article  CAS  Google Scholar 

  • Geunes-Boyer S, Beers MF, Perfect JR, Heitman J, Wright JR (2012) Surfactant protein D facilitates Cryptococcus neoformans infection. Infect Immun 80:2444–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason JE, Galaleldeen A, Peterson RL, Taylor AB, Holloway SP, Waninger-Saroni J, Cormack BP, Cabelli DE, Hart PJ, Culotta VC (2014) Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense. PNAS 111:5866–5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez B, Nosanchuk J (2003) Melanin and fungi. Curr Opin Infect Dis 16:91–96

    Article  PubMed  Google Scholar 

  • Gómez BL, Nosanchuk JD, Dı́ez S, Youngchim S, Aisen P, Cano LE, Restrepo A, Casadevall A, Hamilton AJ (2001) Detection of melanin-like pigments in the dimorphic fungal pathogen Paracoccidioides brasiliensis in vitro and during infection. Infect Immun 69:5760–5767

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonçalves RCR, Pombeiro-Sponchiado SR (2005) Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull 28:1129–1131

    Article  CAS  Google Scholar 

  • Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR (2012) Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol 28:1467–1474

    Article  PubMed  CAS  Google Scholar 

  • Graham DG, Tiffany SM, Vogel FS (1978) The toxicity of melanin precursors. J Invest Dermatol 70:113–116

    Article  CAS  PubMed  Google Scholar 

  • Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13:817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RJ, Valent B (1996) BREAKING AND ENTERING: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    Article  CAS  PubMed  Google Scholar 

  • Huffnagle GB, Chen GH, Curtis JL, McDonald RA, Strieter RM, Toews GB (1995) Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J Immunol 155:3507–3516

    CAS  PubMed  Google Scholar 

  • Hwang C-S, Rhie G, Oh J-H, Huh W-K, Yim H-S, Kang S-O (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148:3705–3713

    Article  CAS  PubMed  Google Scholar 

  • Inamdar S, Joshi S, Bapat V, Jadhav J (2014) Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus Species. Appl Biochem Biotechnol 172:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Izumikawa M, Shipley PR, Hopke JN, O′Hare T, Xiang L, Noel JP, Moore BS (2003) Expression and characterization of the type III polyketide synthase 1,3,6,8-tetrahydroxynaphthalene synthase from Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 30:510–515

    Article  CAS  PubMed  Google Scholar 

  • Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson ES, Tinnell SB (1993) Antioxidant function of fungal melanin. J Bacteriol 175:7102–7104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson ES, Jenkins ND, Todd JM (1994) Relationship between superoxide dismutase and melanin in a pathogenic fungus. Infect Immun 62:4085–4086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn B, Koch A, Schmidt A, Wanner G, Gehringer H, Bhakdi S, Brakhage AA (1997) Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun 65:5110–5117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SM, Solomon EI (2015) Electron transfer and reaction mechanism of laccases. Cell Mol Life Sci 72:869–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaewmalakul J, Nosanchuk JD, Vanittanakom N, Youngchim S (2014) Melanization and morphological effects on antifungal susceptibility of Penicillium marneffei. Antonie Van Leeuwenhoek 106:1011–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KBM, Madan T, Chakraborty T (2006) Surfactant proteins SP-A and SP-D: Structure, function and receptors. Mol Immunol 43:1293–1315

    Article  CAS  PubMed  Google Scholar 

  • Komarov DA, Slepneva IA, Glupov VV, Khramtsov VV (2005) Superoxide and hydrogen peroxide formation during enzymatic oxidation of DOPA by phenoloxidase. Free Radical Res 39:853–858

    Article  CAS  Google Scholar 

  • Kotsias F, Hoffmann E, Amigorena S, Savina A (2012) Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal 18:714–729

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Suzuki K, Furusawa I, Yamamoto M (1983) Scytalone as a natural intermediate of melanin biosynthesis in appressoria of Colletotrichum lagenarium. Exp Mycol 7:208–215

    Article  CAS  Google Scholar 

  • Kubo Y, Takano Y, Endo N, Yasuda N, Tajima S, Furusawa I (1996) Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Appl Environ Microbiol 62:4340–4344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo M-J, Alexander M (1967) Inhibition of the lysis of fungi by melanins. J Bacteriol 94:624–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz MB, Champe SP (1982) Purification and characterization of the conidial laccase of Aspergillus nidulans. J Bacteriol 151:1338–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA (1998) Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 187:79–89

    Article  CAS  PubMed  Google Scholar 

  • Lee J-K, Jung H-M, Kim S-Y (2003) 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase. Appl Environ Microbiol 69:3427–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wei L, Guo T, Tan W (2014) Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro. PLoS ONE 9:e92610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcinkiewicz J (1997) Nitric oxide and antimicrobial activity of reactive oxygen intermediates. Immunopharmacology 37:35–41

    Article  CAS  PubMed  Google Scholar 

  • Martin-Urdiroz M, Oses-Ruiz M, Ryder LS, Talbot NJ (2016) Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae

    Google Scholar 

  • Mason HS (1948) The chemistry of melanin; mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase. J Biol Chem 172:83–99

    CAS  PubMed  Google Scholar 

  • Mayorga ME, Timberlake WE (1992) The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol Gen Genet 235:205–212

    Article  CAS  PubMed  Google Scholar 

  • Mednick AJ, Nosanchuk JD, Casadevall A (2005) Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect Immun 73:2012–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa-Arango AC, Trevijano-Contador N, Román E, Sánchez-Fresneda R, Casas C, Herrero E, Argüelles JC, Pla J, Cuenca-Estrella M, Zaragoza O (2014) The production of reactive oxygen species is a universal action mechanism of amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob Agents Chemother 58:6627–6638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monzani E, Quinti L, Perotti A, Casella L, Gullotti M, Randaccio L, Geremia S, Nardin G, Faleschini P, Tabbì G (1998) Tyrosinase models. Synthesis, structure, catechol oxidase activity, and phenol monooxygenase activity of a dinuclear copper complex derived from a triamino pentabenzimidazole ligand. Inorg Chem 37:553–562

    Article  CAS  PubMed  Google Scholar 

  • Morris-Jones R, Youngchim S, Gomez BL, Aisen P, Hay RJ, Nosanchuk JD, Casadevall A, Hamilton AJ (2003) Synthesis of melanin-like pigments by Sporothrix schenckii in vitro and during mammalian infection. Infect Immun 71:4026–4033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris-Jones R, Gomez BL, Diez S, Úran M, Morris-Jones SD, Casadevall A, Nosanchuk JD, Hamilton AJ (2005) Synthesis of melanin pigment by Candida albicans in vitro and during infection. Infect Immun 73:6147–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan CF, Hibbs JB (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70

    Article  CAS  PubMed  Google Scholar 

  • Nosanchuk JD, Casadevall A (2003) The contribution of melanin to microbial pathogenesis. Cell Microbiol 5:203–223

    Article  CAS  PubMed  Google Scholar 

  • Nosanchuk JD, Rosas AL, Casadevall A (1998) The antibody response to fungal melanin in mice. J Immunol 160:6026–6031

    CAS  PubMed  Google Scholar 

  • Nosanchuk JD, Valadon P, Feldmesser M, Casadevall A (1999) Melanization of Cryptococcus neoformansin murine infection. Mol Cell Biol 19:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosanchuk JD, Ovalle R, Casadevall A (2001) Glyphosate inhibits melanization of Cryptococcus neoformans and prolongs survival of mice after systemic infection. J Infect Dis 183:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Nosanchuk JD, Gómez BL, Youngchim S, Díez S, Aisen P, Zancopé-Oliveira RM, Restrepo A, Casadevall A, Hamilton AJ (2002) Histoplasma capsulatum synthesizes melanin-like pigments in vitro and during mammalian infection. Infect Immun 70:5124–5131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurudeen TA, Ahearn DG (1979) Regulation of melanin production by Cryptococcus neoformans. J Clin Microbiol 10:724–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal AK, Gajjar DU, Vasavada AR (2014) DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med Mycol 52:10–18

    CAS  PubMed  Google Scholar 

  • Paolo WF, Dadachova E, Mandal P, Casadevall A, Szaniszlo PJ, Nosanchuk JD (2006) Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature. BMC Microbiol 6:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Dulzaides R, Camacho E, Cordero RJB, Casadevall A (2018) Cell-wall dyes interfere with Cryptococcus neoformans melanin deposition. Microbiology 164:1012–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto L, Granja LFZ, Almeida MA, Alviano DS, Silva MH, Ejzemberg R, Rozental S, Alviano CS, Pinto L, Granja LFZ et al (2018) Melanin particles isolated from the fungus Fonsecaea pedrosoi activates the human complement system. Memórias Do Instituto Oswaldo Cruz 113

    Google Scholar 

  • Polak A (1990) Melanin as a virulence factor in pathogenic fungi. Mycoses 33:215–224

    Article  CAS  PubMed  Google Scholar 

  • Ramsden CA, Riley PA (2014) Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg Med Chem 22:2388–2395

    Article  CAS  PubMed  Google Scholar 

  • Raper HS (1927) The tyrosinase-tyrosine reaction. Biochem J 21:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Réglier M, Jorand C, Waegell B (1990) Binuclear copper complex model of tyrosinase. J Chem Soc, Chem Commun 0:1752–1755

    Google Scholar 

  • Revankar SG, Sutton DA (2010) Melanized fungi in human disease. Clin Microbiol Rev 23:884–928

    Article  PubMed  PubMed Central  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7:58–67

    Article  CAS  PubMed  Google Scholar 

  • Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H (2000) Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun 68:3696–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas ÁL, Casadevall A (2001) Melanization decreases the susceptibility of Cryptococcus neoformans to enzymatic degradation. Mycopathologia 151:53–56

    Article  CAS  PubMed  Google Scholar 

  • Rosas ÁL, Nosanchuk JD, Casadevall A (2001) Passive immunization with melanin-binding monoclonal antibodies prolongs survival of mice with lethal Cryptococcus neoformans infection. Infect Immun 69:3410–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas ÁL, MacGill RS, Nosanchuk JD, Kozel TR, Casadevall A (2002) Activation of the alternative complement pathway by fungal melanins. Clin Diagn Lab Immunol 9:144–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Różanowska M, Sarna T, Land EJ, Truscott TG (1999) Free radical scavenging properties of melanin: interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med 26:518–525

    Article  PubMed  Google Scholar 

  • Ruiz-Díez B, Martínez-Suárez JV (2003) Isolation, characterization, and antifungal susceptibility of melanin-deficient mutants of Scedosporium prolificans. Curr Microbiol 46:0228–0232

    Article  CAS  Google Scholar 

  • Ryder LS, Talbot NJ (2015) Regulation of appressorium development in pathogenic fungi. Curr Opin Plant Biol 26:8–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabiiti W, Robertson E, Beale MA, Johnston SA, Brouwer AE, Loyse A, Jarvis JN, Gilbert AS, Fisher MC, Harrison TS et al (2014) Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J Clin Invest 124:2000–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Sande WWJ, de Kat J, Coppens J, Ahmed AOA, Fahal A, Verbrugh H, van Belkum A (2007) Melanin biosynthesis in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole. Microbes Infect 9:1114–1123

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Tirado FH, Onken MD, Cooper JA, Klein RS, Doering TL (2017) Trojan horse transit contributes to blood-brain barrier crossing of a eukaryotic pathogen. MBio 8:e02183–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapmak A, Boyce KJ, Andrianopoulos A, Vanittanakom N (2015) The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei. PLoS ONE 10:e0122728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schiel G, Corsaro C, Scalia M, Sciuto S, Geremia E (1987) Relationship between melanin content and superoxide dismutase (SOD) activity in the liver of various species of animals. Cell Biochem Funct 5:123–128

    Article  Google Scholar 

  • Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, Brakhage AA (2009) Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol 75:493–503

    Article  CAS  PubMed  Google Scholar 

  • Schnitzler N, Peltroche-Llacsahuanga H, Bestier N, Zündorf J, Lütticken R, Haase G (1999) Effect of melanin and carotenoids of Exophiala (Wangiella) dermatitidis on phagocytosis, oxidative burst, and killing by human neutrophils. Infect Immun 67:94–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schorey JS, Cheng Y, Singh PP, Smith VL (2015) Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep 16:24–43

    Article  CAS  PubMed  Google Scholar 

  • Serre L, Sailland A, Sy D, Boudec P, Rolland A, Pebay-Peyroula E, Cohen-Addad C (1999) Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway. Structure 7:977–988

    Article  CAS  PubMed  Google Scholar 

  • Seyedmousavi S, Netea MG, Mouton JW, Melchers WJG, Verweij PE, de Hoog GS (2014) Black yeasts and their filamentous relatives: principles of pathogenesis and host defense. Clin Microbiol Rev 27:527–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw CE, Kapica L (1972) Production of diagnostic pigment by phenoloxidase activity of Cryptococcus neoformans. Appl Environ Microbiol 24:824–830

    CAS  Google Scholar 

  • da Silva MB, Marques AF, Nosanchuk JD, Casadevall A, Travassos LR, Taborda CP (2006) Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect 8:197–205

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Kumar J, Kumar A (2018) Isolation of pyomelanin from bacteria and evidences showing its synthesis by 4-hydroxyphenylpyruvate dioxygenase enzyme encoded by hppD gene. Int J Biol Macromol 119:864–873

    Article  CAS  PubMed  Google Scholar 

  • Sorrell TC, Juillard P-G, Djordjevic JT, Kaufman-Francis K, Dietmann A, Milonig A, Combes V, Grau GER (2016) Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265. Microbes Infect 18:57–67

    Article  CAS  PubMed  Google Scholar 

  • Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM, Asamaphan P, Hardison SE, Dambuza IM, Valsecchi I, Kerscher B et al (2018) Recognition of DHN-melanin by MelLec, is required for protective immunity to Aspergillus. Nature 555:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugareva V, Härtl A, Brock M, Hübner K, Rohde M, Heinekamp T, Brakhage AA (2006) Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus. Arch Microbiol 186:345–355

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Kohno M, Niwano Y (2010) Scavenging or quenching effect of melanin on superoxide anion and singlet oxygen. J Clin Biochem Nutr 46:224–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano Y, Kubo Y, Shimizu K, Mise K, Okuno T, Furusawa I (1995) Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Molec Gen Genet 249:162–167

    Article  CAS  PubMed  Google Scholar 

  • Tam EWT, Tsang C-C, Lau SKP, Woo PCY (2015) Polyketides, toxins and pigments in Penicillium marneffei. Toxins 7:4421–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira PAC, De Castro RA, Ferreira FRL, Cunha MML, Torres AP, Penha CVLY, Rozental S, Lopes-Bezerra LM (2010) L-DOPA accessibility in culture medium increases melanin expression and virulence of Sporothrix schenckii yeast cells. Med Mycol 48:687–695

    Article  CAS  PubMed  Google Scholar 

  • Thompson JE, Fahnestock S, Farrall L, Liao DI, Valent B, Jordan DB (2000) The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase. J Biol Chem 275:34867–34872

    Article  CAS  PubMed  Google Scholar 

  • Tsai H-F, Washburn RG, Chang YC, Kwon-Chung KJ (1997) Aspergillus fumigatus arp1 modulates conidial pigmentation and complement deposition. Mol Microbiol 26:175–183

    Article  CAS  PubMed  Google Scholar 

  • Tsai H-F, Wheeler MH, Chang YC, Kwon-Chung KJ (1999) A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 181:6469–6477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto K, Jackson IJ, Urabe K, Montague PM, Hearing VJ (1992) A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. The EMBO J 11:519–526

    Article  CAS  PubMed  Google Scholar 

  • Tudor D, Robinson SC, Cooper PA (2012) The influence of moisture content variation on fungal pigment formation in spalted wood. AMB Express 2:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Turick CE, Knox AS, Becnel JM, Ekechukwu AA, Milliken CE (2010) Properties and function of pyomelanin. Biopolymers

    Google Scholar 

  • Urán ME, Nosanchuk JD, Restrepo A, Hamilton AJ, Gómez BL, Cano LE (2011) Detection of antibodies against paracoccidioides brasiliensis melanin in in vitro and in vivo studies during infection. Clin Vaccine Immunol 18:1680–1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasanthakumar A, DeAraujo A, Mazurek J, Schilling M, Mitchell R (2015) Pyomelanin production in Penicillium chrysogenum is stimulated by l-tyrosine. Microbiology 161:1211–1218

    Article  CAS  PubMed  Google Scholar 

  • Volling K, Thywissen A, Brakhage AA, Saluz HP (2011) Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell Microbiol 13:1130–1148

    Article  CAS  PubMed  Google Scholar 

  • Walker CA, Gómez BL, Mora-Montes HM, Mackenzie KS, Munro CA, Brown AJP, Gow NAR, Kibbler CC, Odds FC (2010) Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot Cell 9:1329–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker L, Sood P, Lenardon MD, Milne G, Olson J, Jensen G, Wolf J, Casadevall A, Adler-Moore J, Gow NAR (2018) The viscoelastic properties of the fungal cell wall allow traffic of AmBisome as intact liposome vesicles. MBio 9

    Google Scholar 

  • Walton FJ, Idnurm A, Heitman J (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57:1381–1396

    Article  CAS  PubMed  Google Scholar 

  • Wang H-L, Breuil C (2002) A second reductase gene involved in melanin biosynthesis in the sap-staining fungus Ophiostoma floccosum. Mol Gen Genomics 267:557–563

    Article  CAS  Google Scholar 

  • Wang Y, Casadevall A (1994) Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun 62:3004–3007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Aisen P, Casadevall A (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 63:3131–3136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Aisen P, Casadevall A (1996) Melanin, melanin “ghosts”, and melanin composition in Cryptococcus neoformans. Infect Immun 64:2420–2424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Dillon J, Gaillard ER (2006) Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem Photobiol 82:474–479

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MH, Klich MA (1995) The effects of Tricyclazole, Pyroquilon, Phthalide, and related fungicides on the production of conidial wall pigments by penicillium and aspergillus species. Pestic Biochem Physiol 52:125–136

    Article  CAS  Google Scholar 

  • Wheeler MH, Abramczyk D, Puckhaber LS, Naruse M, Ebizuka Y, Fujii I, Szaniszlo PJ (2008) New biosynthetic step in the melanin pathway of Wangiella (Exophiala) dermatitidis: Evidence for 2-Acetyl-1,3,6,8-Tetrahydroxynaphthalene as a novel precursor. Eukaryot Cell 7:1699–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson PR (1994) Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol 176:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792

    Article  CAS  PubMed  Google Scholar 

  • Wolf JM, Espadas-Moreno J, Luque-Garcia JL, Casadevall A (2014) Interaction of Cryptococcus neoformans extracellular vesicles with the cell wall. Eukaryot Cell 13:1484–1493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong SSW, Rani M, Dodagatta-Marri E, Ibrahim-Granet O, Kishore U, Bayry J, Latgé J-P, Sahu A, Madan T, Aimanianda V (2018) Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores. J Biol Chem jbc.M117.815852

    Google Scholar 

  • Woo PCY, Tam EWT, Chong KTK, Cai JJ, Tung ETK, Ngan AHY, Lau SKP, Yuen K-Y (2010) High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. The FEBS J 277:3750–3758

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Ohyama A (1972) Characterization of “Pyomelanin”-Producing Strains of Pseudomonas aeruginosa. Int J Syst Evol Microbiol 22:53–64

    Google Scholar 

  • Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

  • Youngchim S, Morris-Jones R, Hay RJ, Hamilton AJ (2004) Production of melanin by Aspergillus fumigatus. J Med Microbiol 53:175–181

    Article  CAS  PubMed  Google Scholar 

  • Youngchim S, Hay RJ, Hamilton AJ (2005) Melanization of Penicillium marneffeiin vitro and in vivo. Microbiology 151:291–299

    Article  CAS  PubMed  Google Scholar 

  • Youseff BH, Holbrook ED, Smolnycki KA, Rappleye CA (2012) Extracellular superoxide dismutase protects histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog 8:e1002713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Lu Z, Strand MR, Jiang H (2011) Antiviral, anti-parasitic, and cytotoxic effects of 5,6-dihydroxyindole (DHI), a reactive compound generated by phenoloxidase during insect immune response. Insect Biochem Mol Biol 41:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Williamson PR (2004) Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 5:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Emma Camacho and Dr. Helene Eisenman for providing the electron microscopy images in Fig. 2. The feedback and support of current AC Laboratory members are much appreciated. DFQS and AC are supported in part by National Institutes of Health grant R01AI052733 and The Johns Hopkins Malaria Research Institute Pilot Grant. DFQS is supported in part by NIH 5T32AI138953 and NIH 1T32AI138953.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Q. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, D.F.Q., Casadevall, A. (2019). The Role of Melanin in Fungal Pathogenesis for Animal Hosts. In: Rodrigues, M. (eds) Fungal Physiology and Immunopathogenesis . Current Topics in Microbiology and Immunology, vol 422. Springer, Cham. https://doi.org/10.1007/82_2019_173

Download citation

Publish with us

Policies and ethics